

Wen, S., Xue, Y., Xu, J., Yuan, L-Y., Song, W-L., Yang, H. and

Si, G-N. (2017) 'Lom: discovering logic flaws within

MongoDB-based web applications’, International Journal of

Automation and Computing, 14 (1), pp. 106-118.

The final publication is available at Springer via http://doi.org/10.1007/s11633-016-1051-x

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher

policies.

Please cite only the published version using the reference above.

Your access and use of this document is based on your acceptance of the

ResearchSPAce Metadata and Data Policies, as well as applicable law:-

https://researchspace.bathspa.ac.uk/policies.html

Unless you accept the terms of these Policies in full, you do not have

permission to download this document.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

http://doi.org/10.1007/s11633-016-1051-x
http://researchspace.bathspa.ac.uk/

International Journal of Automation and Computing X(X), X X, X-X

DOI: XXX

Toward Discovering Logic Flaws within MongoDB-Based
Web Applications

Shuo Wen1 Yuan Xue2 Jing Xu1 Li-Ying Yuan1 Wen-Li Song1 Hong-Ji Yang3 Guan-Nan Si4

1Institute of Machine Intelligence, College of Computer and Control Engineering, Nankai University, Tianjin 300350, China
2Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37212, United States

3Centre for Creative Computing, Bath Spa University, Bath, BA2 9BN, United Kingdom
4School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China

Abstract: Logic flaws within web applications will allow malicious operations to be triggered towards back-end database. Existing
approaches to identifying logic flaws of database accesses are strongly tied to SQL statement construction and cannot be applied to
the new generation of web applications that use NoSQL databases as the storage tier. In this paper, we present Lom, a black-box
approach for discovering many categories of logic flaws within MongoDB-based web applications. Our approach introduces a MongoDB
operation model to support new features of MongoDB and models the application logic as a Mealy finite state machine. During the
testing phase, test inputs which emulate state violation attacks are constructed for identifying logic flaws at each application state. We
apply Lom to several MongoDB-based web applications and demonstrate its effectiveness.

Keywords: Logic Flaw, Web Application Security, MongoDB.

1 Introduction

Web applications have become a major information ac-
cess portal these years. These applications interact with
back-end databases on behalf of their users. The back-end
database executes all the operations requested by the web
application with its privileges, and therefore the application
is indispensable for ensuring security checks effective before
the database accepts an operation. So web applications be-
come one of the primary targets for malicious acquiring or
manipulating the sensitive information in back-end data-
bases. One category of attacks exploits the application’s
input validation mechanisms that allow malformed user in-
puts to be used for constructing database operations, e.g.,
SQL queries. The case of notorious SQL injections belongs
to this type. Another category of attacks, which is referred
to as state violation attacks[1], exploits logic flaws within
the application. This type of attacks misleads the applica-
tion into sending database operation at incorrect applica-
tion states.

In contrast to input validation vulnerabilities which have
received considerable attention, only limited works have
been presented to address logic flaws. The key challenge
comes from the fact that logic vulnerabilities are specific
to intended functionality of a particular web application,
hence general approaches that can be applied to all web
applications require an automated way of deriving the ap-
plication’s intended logic or specification.

On the other hand, NoSQL databases are increasingly
being employed as an alternative to traditional SQL data-

Regular paper
Manuscript received date; revised date
This work was supported by China Scholarship Council, Tianjin

Science and Technology Committee (No. 12JCZDJC20800), Science
and Technology Planning Project of Tianjin (No. 13ZCZDGX01098),
NSF TRUST (The Team for Research in Ubiquitous Secure Technol-
ogy) Science and Technology Center (CCF-0424422), National Key
Technology R&D Program (No.2013BAH01B05), National Natural
Science Foundation of China (No.61402264).
Recommended by Associate Editor Hongji Yang

bases. Their notable characteristics, such as flexible data
models, scalable data storage, nicely support the need of
web applications where the workloads are massive and data
sources may not have a predefined structure. Such flexibil-
ity also brings higher risk of logic vulnerabilities into the
web applications. However, to the best of our knowledge,
no previous work has made efforts to address logic flaws in
web applications with NoSQL database as a backend.

In this paper, we present Lom, the first systematic black-
box approach which discovers logic flaws of database access
within MongoDB-based web applications. The reason why
we choose MongoDB is two folds: (1) According to the
DB-Engines Ranking[2], the popularity of MongoDB is the
top 1 among all the NoSQL databases. (2) As far as data
modeling concerned, MongoDB, which has a complicated
hierarchical data model, is a representative NoSQL data-
base.

Although a few existing solutions aim to address logic
vulnerabilities within web applications, the characteris-
tics of MongoDB make their approaches not applicable
for MongoDB-based web applications: (1) Identical Mong-
oDB operations represented in distinct programming lan-
guages have various appearances. However, previous static
analysis approaches[3, 4, 5], which can only address pattern-
unchanged SQL queries or specific languages, can not
handle the diversified MongoDB operation appearances
of multiple programming languages. (2) Some black-box
approaches[6, 7], which can only target the flat data model
of relational databases, are not appropriate for the hierar-
chical and flexible data model of MongoDB. (3) Many static
techniques[3, 5] require the source code of applications for
analyzing, or can only be applied to specific web develop-
ment languages and platforms[5, 8]. (4) A few approaches[6]

need to access to server-side session information. (5) Some
previous approaches[8, 9, 10] can address only one specific
vulnerability and cannot be easily extended to handle other
forms of logic flaws.

2 International Journal of Automation and Computing X(X), X X

By contrast, our approach supports the features of Mong-
oDB. We explore the protocol layer to extract the Mong-
oDB operation regardless of programming languages and
introduce MPath, which is an XPath-like representation to
locate each value in the hierarchical model within the Mong-
oDB operation. In addition, our technique is designed to
be general and cover many kinds of logic vulnerabilities.

The logic of a web application is modeled by a Mealy
finite state machine[11] (Mealy FSM). To discover logic vul-
nerabilities, the intended state machine is built as a partial
state machine over the expected user inputs (MongoDB op-
erations) when users follow the navigation paths within the
web application first. After that, on basis of the inferred
intended Mealy machine, we generate unexpected test in-
puts to exploit logic vulnerabilities within the application.
These test inputs are related to three categories of attacks.
After producing test inputs, we send the test web requests
to web applications and evaluate the outputs to discover
potential logic flaws.

Our contributions are summarized as follows:

• We present a novel black-box approach for discovering
logic vulnerabilities within MongoDB-based web ap-
plications. In particular, by observing the messages in
the protocol layer, our approach introduces a Mong-
oDB operation model to represent the MongoDB ac-
tions triggered within the web application. We char-
acterize the logic flaws over the Mealy FSM, system-
atically utilize the observed user inputs for deriving
the specification and generate test inputs to exploit
vulnerabilities.

• Our approach is able to cover numerous categories of
logic flaws without the need of application source code
and server-side session information, therefore it can
support different coding languages and environments.

• We implemented a prototype system Lom and demon-
strate that Lom can be used to identify logic flaws in
today’s MongoDB-based web applications.

The rest of this paper is organized as follows. We present
our problem formulation in Section 3. Our approach and
implementation are illustrated in details in Section 4 and
Section 5, respectively. Section 6 presents our experimental
results. Finally, Section 2 discusses related work and the
paper is concluded in Section 7.

2 Related Works

To the best of our knowledge, only two existing researches
make efforts on NoSQL database security. Okman et al.[13]

analyzes the main functionality and security features of
two popular NoSQL databases: MongoDB and Cassandra.
Aniello et al.[14] analyzes the vulnerabilities of the gossip-
based membership protocol used by Cassandra. Nonethe-
less, none of these approaches concentrates on the flaw with
in NoSQL database based web applications, while our ap-
proach detects logic flaws with in modern MongoDB-based
web applications.

Most previous researches[10, 15, 16, 17] endeavor to exploit
various vulnerabilities within web applications. For in-

stance, SecuBat[18] are used to identify input validation
vulnerabilities.

Nevertheless, very few techniques address logic flaws
within modern web applications. There are two categories
of approaches researched for securing legacy web applica-
tions from logic flaws:

1. Vulnerability Analysis: It tries to identify and fix the
logic vulnerabilities within the applications.

2. Attack Detection: It tries to detect and block logic
attacks launched against the vulnerable applications.

The key issue that is common for both approaches is how
to derive the application logic specification. Then the logic
specification is used for either attack detection or vulnera-
bility analysis.

The logic specification that is general to a number of
web applications can be manually pre-specified. Nemesis[19]

aims at providing reliable authentication and authorization
mechanisms for web applications. By modifying the lan-
guage runtime, it can track users’ credentials and enforce
pre-specified security policies over resources, such as files,
database objects, etc. CLAMP[20] employs virtualization
technology to isolate the application components for differ-
ent users, so that the current user can only access his/her
own data. However, more commonly, the logic specification
is specific to each application and not available as a pri-
ori. Swaddler[1], BLOCK[21] and SENTINEL[6] establish
application-specific behavioral models and identify the run-
time deviation from the established model as potential logic
attacks. In particular, SENTINEL focuses on securing the
database access triggered by the web application based on
a set of invariants extracted from execution traces. The ob-
jective of these work is to detect whether a given user input
violates the application specification, while our objective
is to effectively identify concrete inputs to the web appli-
cation which can violate the specification, which is much
more challenging.

Our work shares the same objective of identifying logic
flaws within web applications as a number of existing works.
Swaddler[1], WAPTEC[3], RoleCast[4], Waler[5], Doupé et
al.[8], Sun et al.[12], MiMoSA[22] and FixMeUp[23] infer the
logic specification from application source code, through
either static analysis or instrumentation. However, these
techniques are language-dependent and limited in the spec-
trum of logic flaws they can deal with by their capability
of handling language details. For example, Waler[5] can
only identity violations of value-related invariants in JSP
web applications, which are inferred from dynamic execu-
tions. Sun et al.[12] assume a strong role lattice model for
identifying access control flaws within PHP web applica-
tions. WAPTEC[3] collects the set of constraints along the
paths leading to sensitive operations and constructs exploits
to circumvent the security checks. Doupé et al.[8] specifi-
cally focus on Execution After Redirection vulnerabilities
in Ruby web applications by analyzing control flows from
application source code.

In contrast, our approach extracts the MongoDB oper-
ation from the protocol layer without source code require-
ment, and can be utilized for all programming languages

Shuo Wen et al. / Toward Discovering Logic Flaws within MongoDB-based Web Applications 3

supported by MongoDB. Moreover, most of the above ap-
proaches target only one specific vulnerability and cannot
be easily extended to handle other categories of logic flaws.
Our technique is designed to be general and covers many
kinds of logic vulnerabilities.

Techniques are also designed to discover logic flaws
within web applications without source code. For exam-
ple, Doupé et al.[8] and NoTamper[9] can address EAR vul-
nerability and parameter tampering respectively. In com-
parison, our approaches can cover not only these two at-
tacks, but also forceful browsing attack. InteGuard[24] and
EURECOM[25] attempt to secure multi-party web applica-
tions. LogicScope[26], SENTINEL[6] and BLOCK[21] make
use of session information to construct application specifica-
tions. In comparison, our work does not require server-side
session information from the application developers. Li et
al.[7] proposes an automated black-box technique for identi-
fying access control vulnerabilities. Though SENTINEL[6]

and the work of Li et al.[7] can be applied to traditional
RDBMS, they can not handle the hierarchical and schema-
less data model of MongoDB, which brings in new chal-
lenges. Our technique supports these new features of Mong-
oDB back-end web applications.

Web applications are more and more built with third-
party web services through APIs and split at both client-
side and server-side, where logic vulnerabilities might arise.
Wang et al.[27] discovered logic vulnerabilities within the
checkout procedures, which can be exploited by the at-
tackers to shop for free. Its further research[28] also iden-
tified logic vulnerabilities within web-based single-sign-on
services. InteGuard[24] performs security checks over a set
of invariant relations among HTTP interactions to defeat
logic attack at runtime. INDICATOR[29] employs hybrid
analysis to infer the dependency constraints on parameters
for web services. Guha et al.[30] extracted event graphs from
client-side web applications and detect malicious client be-
haviors at runtime. Krishnamurthy[31] can be used to build
secure web applications, where security policies specified by
developers can be automatically verified and enforced. Our
technique focuses on logic vulnerabilities within server-side
web applications and has the potential to be extended to
handle the above scenarios.

A number of testing tools, both open-source, e.g., Spike,
Burp, and commercial, e.g., IBM AppScan, have been pro-
posed for identifying input validation vulnerabilities within
web applications[16]. They feed random inputs from a li-
brary of known attack patterns into applications. To im-
prove the testing coverage and efficiency, random fuzzing
can be enhanced by guided test input generation[17, 32, 33].
None of these technique can effectively handle logic vulner-
abilities within web applications.

3 Problem Description

3.1 Background of MongoDB

3.1.1 The Data Model of MongoDB

Document In MongoDB, the basic unit of data is docu-
ment whose structure is hierarchical and non-relational. A
document includes a set of field/value pairs where the value
of a field can even be a document or an array which is a

{

"$or" : [

{

"Number" : {

"$lt" : 10

}

},

{

"selected" : true

}

]

}

Figure 1 A document / A MongoDB request variable

list of values. Array values can be all the supported values
for normal field/value pairs in MongoDB, even nested ar-
rays and embedded documents. Figure 1 shows a document
which employs embedded documents and array values.

Collection MongoDB documents are grouped as one or
more collections in a MongoDB database. The schema of a
collection does not need to be defined while the collection is
created, which means users have more data-modelling flex-
ibilities to match the design and performance requirements
of an application.
3.1.2 MongoDB Wire Protocol

MongoDB offers many additional drivers for users to
work with their proficient programming languages. The
same operations represented in distinct drivers may have
different appearances. To avoid this difference, we focus
on internals of how drivers access the MongoDB server.
The drivers use MongoDB Wire Protocol, which is a sim-
ple socket-based, request-response style and lightweight
TCP/IP wire protocol, to make clients communicate with
the MongoDB server through MongoDB request messages.
A message defines the concrete data which an operation can
access and the type of the operation. With these messages,
update, delete, insert and read operations can be performed
on MongoDB.
3.1.3 MongoDB Request Variable

struct OP_UPDATE {

MsgHeader header; // standard header

int32 ZERO; // reserved for future use

cstring fullCollectionName; // "databaseName.collectionName"

int32 flags; // 0 - upsert; 1 - multiupdate

document querySelector; // to select the document

document updateDefinition; // to specify the update to perform

}

Figure 2 The structure of the update message

Figure 2 shows the structure of a category of MongoDB
request message (update message). As can be seen from
the figure, the data structures of most useful variables in
MongoDB Wire Protocol are documents, such as the query
selector and the update definition. This structure is able

4 International Journal of Automation and Computing X(X), X X

to support complex commands. For instance, Figure 1 is
also a MongoDB request variable (query selector). Here
“$lt” is a comparison operator corresponding to “less than”.
Each of these document structure variables is denoted as
MongoDB Request Variable in this paper. Apparently, all
the operation parameters are placed in these hierarchical
and non-relational variables.

3.2 Logic Flaws within MongoDB-based

Web Applications

Figure 3 shows a simple vulnerable application to il-
lustrate the logic vulnerabilities we concentrate on in our
research. A logged in user will be redirected to the “in-
dex.php” at first. If the current user is an administrator,
he is allowed to achieve links for adding new users, editing
and deleting any of the registered users. If the current user
is a regular user, he can only browse the page for editing
his personal information.

We model a web application using a Mealy finite-state
machine (Mealy FSM) model (S, s0, Σ, Λ, T , G), where
S is the set of states, s0 ∈ S is the initial state, Σ is the
set of input symbols, Λ is the set of output symbols, T :
S ×Σ → S is the set of transition functions mapping pairs
of a state and an input symbol to the corresponding next
state, G : S×Σ → Λ is the set of output functions mapping
pairs of a state and an input symbol to the corresponding
output symbol.

To find out the logic flaws within a web application, we
are required to analyze its two categories of Mealy FSMs:

1. Intended FSM (denoted as Fi), which models the be-
havior of the originally planned web application with-
out any logic flaws;

2. Realistic FSM (denoted as Fr), which models the be-
havior of the actual web application implemented by
the developer.

If Fr is equivalent to Fi, the web application is regarded
as secure. Once disparities which involve sensitive opera-
tions exist between Fr and Fi, we affirm the application has
logic flaws .

As illustrated in Figure 4, the example application has
three states: the guest user who is not logged in (s0), regular
user (s1) and administrator (s2). Each input symbol I ∈ Σ
is an abstract representation of the triggered operation on
back-end MongoDB (e.g. op1, op2 and op3 in Figure 3),
which consists of two parts:

1. Operation Contour (denoted by C), which represents
the contour of the operation (refer to Section 4.3.1 for
details);

2. Transmitted Parameter Mapping (denoted by P),
which represents both the parameter which can be
transmitted from web request to the operation and its
related value set(refer to Section 4.3.2 for details).

Each output symbol in Λ is the acceptance of the opera-
tion by back-end MongoDB.

The intended FSM (Fi) for the application works as fol-
lows: At state s1, since it is intended that the regular user
can only edit his personal information, when the regular

user sends an input symbol I1 = C1 ·P1, where the “userid”
parameter is equal to the current user id, back-end Mong-
oDB will accept this operation (output symbol O1). When
this user attempts to edit other users’ information, delete
or add a user, i.e., sending I2 (I2 is different from I1 due to
the diverse parameter mappings.), I3 or I4, MongoDB will
not accept or trigger the operation (output symbol O2).

Nonetheless, in this application, there are three logic
flaws which are reflected as the discrepancies between Fi

and Fr. First, the “editUser.php” fails to check whether
the “userid” parameter is the same as current user’s infor-
mation. Second, despite the “delUser.php” checks whether
current user is an administrator and seems to reject the
operation from web response, it does not end the applica-
tion execution, thus the back-end MongoDB operation is
still triggered. Third, the “addUser.php” does not check
whether the current user has the admin privilege. These
vulnerabilities allow three types of attacks:

1. Parameter Manipulation Attack : When I2 is sent to
the application at state s1, O1 is returned, which
means a regular user can edit other users’ information.

2. Execution After Redirection (EAR) Attack [8]: When
I3 is sent to the application at state s1, O3 is returned,
which means a regular user can still successfully make
back-end MongoDB delete other users’ information al-
though O2 appears to be returned from web response.

3. Forceful Browsing Attack : When I4 is sent to the ap-
plication at state s1, O4 is returned, which means a
regular user can add new users.

All the attacks mentioned above are common attacks tar-
geting different kinds of logic vulnerabilities within data-
base based web applications. EAR attack is especially chal-
lenging due to the attack seems to be defended from web
response, however, the back-end database still triggers the
database operation which is not designed to run.

At a given state s, only a subset of input symbols are
expected by the application (denoted as Σexp(s)) and pro-
cessed to produce normal output symbols, i.e., Λnor(s) =
G(s,Σexp(s)). The expected input symbols are the trig-
gered MongoDB operations when the user follows the nav-
igation links of the web application. The normal output
symbols mean that MongoDB accepts the expected Mong-
oDB operations. All the other input symbols, which are
not expected at state s, should not be triggered by Mong-
oDB, resulting in blank output symbols. A blank output
symbol means that the application refuses to accept the op-
eration and therefore back-end MongoDB does not execute
anything. As shown in Figure 4, for state s1, the expected
input set is {I1}, the normal output set and the blank out-
put set is {O1} and {O2}, respectively. For state s2, the
expected input set is {I1, I2, I3, I4} and the normal output
set is {O1, O3, O4}. The behaviors of Fi and Fr over the ex-
pected input symbols should be consistent because the web
application aims at implementing all the intended function-
alities. Nevertheless, there may be unexpected inputs which
are accepted by Fr. Therefore, if an input symbol, which is
not expected at state s, can be transmitted into the applica-
tion and triggered by MongoDB, MongoDB then generates

Shuo Wen et al. / Toward Discovering Logic Flaws within MongoDB-based Web Applications 5

editUser.php

<?php

//op1

require('dbconnection.php');

$mongo = DBConnection::instantiate();

$collection = $mongo-> getCollection('users');

$id=$_GET['userid'];

$user = array();

$user['name'] = $_POST['name'];

$user['password'] = $_POST['pwd'];

$collection-> update(array('_id' => new MongoId($id)), $user);
…

?>

addUser.php

<?php

//op3

require('dbconnection.php');

$mongo = DBConnection::instantiate();

$collection = $mongo->getCollection('users');

$user =array(

'name' => $_POST['name'],

'password' => $_POST['pwd']);

$collection->insert($user);

echo 'User created successfully';
…

?>

delUser.php

<?php

if ($_SESSION['privilege'] != "admin")

echo(“Forbidden access.");

//op2

require('dbconnection.php');

$mongo = DBConnection::instantiate();

$collection = $mongo->

getCollection('users');

$id=$_GET['userid'];

$collection->remove(array('_id' => new

MongoId($id)));
…

?>

index.php

<?php

if ($_SESSION['privilege'] == "admin") {

$alluser = getAllUsers();

foreach ($alluser as $eachuser) {

echo "Delete ";

echo "Edit ";

}

echo “Add ”;

} else if ($_SESSION['privilege'] == “commonuser") {

echo "Edit";

}
…

?>

Figure 3 Example Application

S1

S0

S2

privilege:

administrator

privilege:

regular user

privilege: null

Input Symbols

I1= C1 � P1: Cop1 . [userid : vcon]

I2= C1 � P2: Cop1 . [userid : vncon]

I3= C2 � P: Cop2 . [userid : not null]

I4= C3 � P: Cop3 . [userid : not null]

Output Symbols

O1: update operation is accepted

O2: blank (operation is not accepted)

O3: delete operation is accepted

O4: insert operation is accepted

Fi

S1:

I1

exp(S1)

I2

I3

I4

O1

nor(S1)

O2

b(S1)

S2:

I1

exp(S2)

I2

I3

I4

O1

nor(S2)

O2

b(S2)

O3

O4

Fr

S1:

I1

exp(S1)

I2

I3

I4

S2:

I1

exp(S2)

I2

I3

I4

O1

nor(S2)

O2

b(S2)

O3

O4

O1

nor(S2)

O2

b(S2)

O3

O4

Figure 4 FSM Representation of Figure 3

6 International Journal of Automation and Computing X(X), X X

an output symbol that falls beyond the blank output set, we
recognize this web application has a logic vulnerability at
state s. The related input symbol is defined as a malicious
input symbol (Imal).

4 Approach

4.1 Approach Overview

As mentioned in Section 3.2, we need to construct mali-
cious inputs to verify their outputs for each state. It is a
challenging task because we do not possess anything about
the entire input symbol set and unexpected input symbol
set at each state. Since some malicious inputs, e.g. EAR
attacks, can modify the data in back-end MongoDB secretly
without affecting intended web responses. To symbolize the
input symbol, we need to learn the operation over Mong-
oDB (Section 4.2). The characteristics of MongoDB make
the understanding more sophisticated:

1. As illustrated in Section 3.1.2, the same MongoDB
operation may have dissimilar expression in different
programming language and what is more, an opera-
tion may be characterized by several statements in the
source code (such as op1, op2 or op3 in Figure 3).
Hence we utilize dynamic analysis but not static anal-
ysis to make our approach not constrained to specific
programming language or driver. We look into the
protocol layer, which is the underlying unification of
distinct drivers, to extract the MongoDB operation no
matter which programming language the application
is written in.

2. As Section 3.1.3 shows, the basic data model of Mong-
oDB, which is also utilized in the MongoDB request
variable, is hierarchical and non-relational. MongoDB
request variables are the most important components
of MongoDB request messages. Thus we need to locate
each field/value pair in the hierarchical data model.
We present MPath to support this nested data struc-
ture.

Our approach first builds a partial Mealy FSM over the
expected input domain by leveraging the collected traces.
For each application, we identify user privileges and con-
struct each privilege as a State. Normal users’ traces are
collected for different users at each state. The traces we col-
lect include web requests/responses and MongoDB request-
s/responses from protocol layer. The traces are symbolized
as following:

1. Input Symbolization (Section 4.3), in which we ab-
stract concrete MongoDB operations into input sym-
bols to profile the expected input domain at each state,
i.e., Σexp(s),∀s ∈ S;

2. Output symbolization, in which we observe whether
the MongoDB accepts the operations or not for gen-
erating output symbols and the mappings between
the expected inputs and normal output symbols, i.e.,
G(s,Σexp(s)) → Λnor(s),∀s ∈ S. Application state
transitions and the corresponding input symbols that
trigger the transitions are also observed in this phase,
i.e., T : S × Σ → S.

After the inference of partial FSM, we will leverage this
inferred FSM to construct unexpected inputs at each appli-
cation state (Section 4.4) and test the application. Output
symbols will be evaluated to discover potential logic flaws
(Section 4.5).

4.2 MongoDB Operation Analysis

A MongoDB operation is related to the read, delete,
update or insert message in MongoDB Wire Protocol. It
can read or modify the records in MongoDB. We extract
the kernel information (message/operation type, collection
name and the MongoDB request variables) of a message as
its MongoDB operation, which represents its execution on
MongoDB performed by the user through the web applica-
tion.

4.3 Input Symbolization

Given a set of MongoDB operations, we need to represent
them with a finite number of input symbols. We symbolize
each MongoDB operation with a two-part structure, i.e., the
operation contour and the transmitted parameter mapping.

4.3.1 Variable/Operation Contour

MPath and Variable Contour Since MongoDB re-
quest variables are included in MongoDB operations, all
the MongoDB request variables in the operations need to
be stored reasonably. So the main challenge is how to model
all of these variables in a more efficient way for convenient
comparison, i.e. locating each parameter easily.

To locate each parameter, we introduce MPath which is
an analogue of XPath. As an example, the “$lt” param-
eter of Figure 1 can be expressed as “$or/Number/$lt”.
With this kind of effective representation, we can express
the original hierarchical MongoDB request variable.

We then define the Contour of a MongoDB request vari-
able as the variable without any parameter values. Each
original variable is represented as its extracted contour and
its parameter value set. For instance, the contour of the
Figure 1 can be represented as Figure 5, where “p1” and
“p2” represent the value of related parameters. The top
of the figure is the document view of the contour and the
bottom is the MPath view which is the implementation.
Both the contour and the parameter set are derived from
its original variable.

Operation Contour The operation type, collection
name and the variable contours of a MongoDB operation
is denoted as its operation contour. Similarly, each opera-
tion is represented as its contour and its parameter value
set.

4.3.2 Transmitted Parameter Mapping

We group all MongoDB operations based on their con-
tours as well as the kernels of their respective web requests.
A web request kernel includes HTTP method and request
URL path without URL parameters. Each group is de-
noted as an Operation Group. For a MongoDB operation
mo and its related web request wr, we denote a web request
parameter of wr is pwr and its value is vpwr

, a MongoDB
operation parameter of mo is pmo, and its value is vpmo

.
If ∃pwr, pmo ∧ vpwr

= vpmo
holds for all MongoDB oper-

ations and web requests within the same operation group,

Shuo Wen et al. / Toward Discovering Logic Flaws within MongoDB-based Web Applications 7

{

"$or" : [

{

"Number" : {

"$lt" : [p1]

}

},

{

"selected" : [p2]

}

]

}

$or/Number/$lt: [p1],

$or/selected/: [p2]

Figure 5 A variable contour (2 appearances)

we define there is a Parameter Transmission Path from pwr

to pmo, and denote pwr and its related value set Vpwr
as a

Transmitted Parameter Mapping.

4.3.3 Symbolization

We first profile each transmitted parameter mapping and
construct this part based on its related value set, i.e., the
values of all transmitted parameters because a parameter
may appear infinite pairs. The characterization of each
value domain is a two step process. The constraints be-
tween the parameter value set and the specific state, i.e.
privilege, are extracted first by profiling each parameter at
each state. For each state, the value set collected for each
parameter within the same operation group is utilized for
grouping the parameter into three categories:

1. Random Parameter (denoted as paraur): The value
set of this type of parameter has no limitation. Its
value domain is represented with two values: null and
notnull.

2. Unbounded Constrained Parameter (denoted as
parauc): The value set of this type of parameter is
affected by certain constraints though it is infinite.
Single privilege-related constraint is our focus in this
paper, which means the parameter value is always
specific for each user under this state (e.g., the value
of “userid” of “editUser.php” at s1 in Figure 3 is
particular for each user under s1). Its value domain
is represented with three kinds of values: null, vcon
and vncon, where vcon denotes the value satisfying a
constraint linked to a specific user under this state
and vncon denotes other values.

3. Bounded Parameter (denoted as parab): We represent
its value domain with the value set and two kinds of
values: null and voutb, where voutb denotes the values
out of the bounded set.

We aggregate all the state views of the parameter value
domains into a macroscopic view afterwards. If the value
domain types of a parameter is consistent for all states, its

domain type will not be changed and be recomputed. For
parauc, the updated value domain is value set divided by
constraints. For parab, its value domain adds additional
values. If the value domain types of the parameter over dif-
ferent states are disparate, the more restrictive type (the re-
strictiveness order is defined as paraur < parauc < parab)
is adopted and its value domain will be divided. For in-
stance, the parameter “userid” of “editUser.php” in Figure
3 is constrained by specific user at s1, but inferred as an
paraur at s2. So its macroscopic type will be parauc and
two input symbols are produced at s2, i.e., C1·P1 and C1·P2.

4.4 Test Input Symbol Generation

As Figure 6 illustrates, there are two methods designed
for generating test input symbols at a given state s.

4.4.1 Parameter Manipulation
For an expected input symbol I = C · P ∈ Σexp(s) at

state s, we manipulate P directly, i.e., values of one or more
parameters will be changed so as to make the tampered in-
put symbol not included by the expected input set at state
s. For an unbounded constrained parameter, we modify
its value from vcon to vncon. For a bounded parameter, its
value is changed to another value in the bounded set or
voutb. The left of Figure 6 shows an example, P1 of input
symbol I1 is manipulated so as to generate a test input Imal

for s1. This method exhibits parameter manipulation at-
tacks, where parameter values are manipulated for violating
constraints between operations and the current state.

4.4.2 Forceful Browsing/Execution After Redirec-
tion

We observe another state s′ which has one or more ex-
pected input symbols excluded from the expected input set
of current state s. Input symbols at s′ with operation con-
tours which are not included by the expected input symbol
set of state s are chosen as test input symbols for s, i.e.,
Imal ∈ Σexp(s

′)−Σexp(s
′)∩Σexp(s). The right of Figure 6

shows an example, the input symbols at state s2 with C3

and C4 are selected as test inputs for state s1 since they
are not included by s1. This method exhibits two types of
attacks:

1. Forceful Browsing Attacks: One or more hidden sen-
sitive link which should not be accessible at current
state can be forcefully browsed;

2. Execution After Redirection (EAR) Attacks: The at-
tacker seems to be blocked by the application from the
web response of the page, but the sensitive MongoDB
operations related to the page can still be successfully
run on back-end MongoDB. These EAR attacks, which
only manipulate the data stored in MongoDB, violate
the state secretly.

4.5 Output Evaluation

We denote the output symbol generated after the test
input Imal being delivered into the application at state s as
Otest. The output evaluation will determine whether Otest

belongs to the blank output set. Since the blank output
symbol means that the application refuses to accept the
operation thus if back-end MongoDB trigger the operation
of the test input, Otest falls out of the blank output set.

8 International Journal of Automation and Computing X(X), X X

Parameter Manipulation Forceful Browsing / EAR

I
1 1 1

1

Ima�
 C1 P2

p 1

2

I1 C1 P1
I2 C1 P2

I3 C2 P

I4 C3 P

Ima�
s1

Figure 6 Test Input Generation

We collect the traces during the testing, after all the test
inputs are delivered and the traces are gathered, we analyze
each interaction in the traces to examine whether each test
operation has been triggered or not. If a test operation is
performed, we recognize its related test input as a potential
logic flaw.

5 Implementation

We implement a prototype system Lom for discovering
logic vulnerabilities within MongoDB-based web applica-
tions. As Figure 7 shows, Lom has three major components,
including Trace Collector, Specification Analzyer and Test-
ing Engine. These components are corresponding to three
phases: trace collection, specification inference and testing.

5.1 Phase I: Trace Collection

Trace Collector, which collects the communication be-
tween the web application / MongoDB and the client when
users navigate through the application during attack-free
sessions, is implemented in our research by utilizing the
open source network protocol analyzer Wireshark.

5.2 Phase II: Specification Inference

Specification Analyzer is executed in Phase II to derive
both the partial Mealy FSM and the testing specification.
Symbolizer first transforms collected traces (in Phase I) into
symbolized session logs. Then, session logs are used by the
Mealy FSM Analyzer module to derive the partial FSM,
resulting in two files: StateProfile, which characterizes the
mapping between input/output symbols at each state and
DriverSpec, which records the transitions between the set of
application states, as well as the input symbols that trigger
the transitions. Finally, StateProfile is analyzed by Test-
Spec Generator to generate the testing specification, which
includes both a set of test input symbols for each state and
their related output symbols for evaluation.

5.3 Phase III: Testing

Testing Engine is executed in Phase III to test whether
the application has logic vulnerabilities, based on the above
derived profiles and specifications. It will produce test web
requests from test inputs (by Web Request Generator), de-

liver them into the application and evaluate the test traces
for logic flaw identification (by Output Evaluator).

Testing Controller is the core module that takes charge
of the entire testing procedure. It first loads TestSpec and
other profiles and checks the current application state. If
the test of the current state is not completed, it retrieves the
next available test input symbol, delegates Request Gener-
ator to generate a concrete web request and submit to the
application. After it receives the web response, it will wrap
up all the necessary information and send it to Output Eval-
uator for evaluation, where logic vulnerabilities, if exist, will
be reported. If the test of the current state is completed,
i.e., no test inputs are left, Testing Controller will move to
the next available test state. It will consult State Driver,
which loads DriverSpec and keeps track of the transition
graph of the application, to get the path leading to the next
test state. The path computed by State Driver is essentially
the shortest path from the current state to the target state
(i.e., a sequence with minimum number of input symbols),
which will be instantiated by Request Generator and trigger
the state transition step by step to the target state. This
mechanism is desirable, since we cannot directly drive the
application into our desired abstract state. For the exam-
ple application, after we have tested state s1 for the regular
user, we have to first log out (i.e., move to state s0) and
log in as an administrator to test state s2. If all the states
have been fully tested, the testing procedure is finished.

One key challenge we need to address is how to instanti-
ate abstract input symbols into concrete web requests with
meaningful parameters. In Phase II, when we profile web
requests, we also infer the value type (e.g., number, literal
string) of each parameter. When Request Generator tries
to generate the concrete value for a parameter, it checks its
value type and randomly generates a value of that type or
retrieve a value from a pre-loaded value store (i.e., Input-
Profile). In particular, Request Generator includes Login
Helper module, which helps Testing Engine successfully log
into the application. Login Helper requires the user to pro-
vide a LoginProfile file, which specifies the input symbol
that represents the login request and at least one set of le-
gitimate user credential, e.g., username and password, for
each type of user, e.g., regular user, administrator.

Shuo Wen et al. / Toward Discovering Logic Flaws within MongoDB-based Web Applications 9

Trace Collector

(Wireshark)

Client/

Simulator

Web and MongoDB

Request/Response
SymbProfile

Phase I: Trace Collection

Session Log

Phase II: Specification Inference

DriverSpec

StateProfile

Specification Analyzer

Symbolizer

Mealy FSM Analyzer

TestSpec Generator TestSpec

Testing Engine

State Driver

Phase III: Testing

Symbolizer

Login Helper LoginProfileInputProfile

Testing

Controller

Output

Evaluator

Request

Generator

MongoDB

Web Application

MongoDB

Web

ApplicationTest

Trace

Collector

Figure 7 Prototype System Architecture

6 Evaluation

We choose a set of interactive MongoDB-based web ap-
plications for evaluating our prototype system Lom. We
deploy all web applications on a 3.30GHz Intel core i3-2120
Linux server with 4GB RAM. To facilitate trace collection,
we build user simulators for each application based on Se-
lenium WebDriver. We first identify user privileges and
their corresponding atomic actions by following navigation
links. All of the atomic actions can be recognized as in-
tended functions by the web application designers due to
each of them follows the navigation paths under normal
situation implemented by the designer. Therefore the cor-
rectness can be guaranteed. Then, the simulator performs a
random sequence of atomic actions automatically with dif-
ferent privileges and users, each user will run all the atomic
actions under his state at least once.

Our inference is performed through dynamic analysis,
where the web application is executed under the constraint
of navigation paths. This constraint has been applied in
several existing approaches [5, 12] and shown to be effective
and general to cover a large number of web applications.

6.1 Analysis of Results

Lom first runs in Phase I and Phase II to collect traces
and infers the application logic specification. The statistics
of collected traces and inferred FSMs are shown in Table 1,
including the number of files, collected web requests, Mong-
oDB requests, states, input symbols. Then, Lom generates
the testing specification and launches the testing procedure
against each web application. It constructs test web re-
quests and sends them to the application. Testing Evalu-
ator then evaluates the test inputs based on the collected
test traces. One feature of Lom is that it also gives concrete
attack vectors and evidences for further inspection.

Table 2 shows the testing results, including the number
of test inputs generated by each method, flagged attacks
and false positives. We also report the sum of real attacks
(true positives) and vulnerable web pages. Note that these
two numbers can be different, because a web page may have
one or more unexpected operations which can be triggered
under different states. In the following, we describe the
details of logic flaws we identify from each web application.
As Table 2 shows, 31 vulnerable web pages are discovered
with no false positive.

10 International Journal of Automation and Computing X(X), X X

Table 1 Summary of Traces and Inferred FSM

Web Application File Web Request MongoDB Request State Input

MongoBlog 41 371 1165 2 24
QuickBlog 15 336 346 3 11

SimpleNote 21 437 493 3 10

ProductShow 8 65 25 2 2

Table 2 Summary of Testing Results

Web Application Method Test Inputs Flagged Attacks False Positives True Positives Vulnerable Web Pages

MongoBlog FE 11 10 0 14 13
PM 4 4 0

QuickBlog FE 21 13 0 14 10

PM 1 1 0

SimpleNote FE 34 18 0 18 7
PM 0 0 0

ProductShow FE 1 1 0 1 1

PM 0 0 0

Summary 72 47 0 47 31

FE: Forceful browsing and execution after redirection (EAR).
PM: Parameter manipulation.
True Positives: i.e. the sum of real attacks.

6.1.1 MongoBlog

There are three states in this web application: guest,
regular user and admin user. Regular users can post new
articles, add comments under articles, edit or delete the
articles or comments created by himself. Admin users can
manage all the articles and comments. Either a regular user
or an admin user can mark his favorite articles. Several logic
vulnerabilities are identified within this application. First,
forceful browsing attacks can be applied on the application,
guest users can publish and manage articles and comments
as other types of users. Second, the application can be at-
tacked by parameter manipulation, a regular user can view
other user’s summary page which shows articles, comments
or favorite articles of corresponding user by manipulating a
parameter.

6.1.2 QuickBlog

This application also has three states: guest, regular user
and administrator. Only the administrator is allowed to
modify all of the posts. The regular user can edit or delete
his own posts. Logic flaws exist within administrative or
regular users’ pages which fail to check the current applica-
tion state before any database operations. Thus an attacker
can forcefully browse those pages and trigger sensitive oper-
ations, a regular user can perform parameter manipulation
attacks to view other regular user’s pages.

6.1.3 SimpleNote

There are three states in SimpleNote: regular user, user
manager and super administrator. Each regular user can
only view, edit and delete his own notes. User managers
can manage the profile of regular users. Super administra-
tors have the highest privilege, they are allowed to handle
all users and notes. We identify logic vulnerabilities within
user managers’ and super administrators’ pages which miss
the examination of current application state. These vul-
nerabilities allow an attacker to browse vulnerable pages
directly for managing other users’ notes or profiles.

6.1.4 ProductShow

ProductShow has two states: the administrator which
can add new product to MongoDB from his own page, the
common user which can read products’ information. An
attacker can forcefully browse the administrative page due
to the application does not check the current application
state.

7 Conclusions

In this paper, we present the first systematic black-box
approach to identify logic flaws within MongoDB-based web
applications. A prototype system Lom, which introduces
a MongoDB operation model to support new features of
MongoDB and models the application logic as a Mealy fi-
nite state machine, is implemented and evaluated to demon-
strate the practical utility of our approach.

With the development of web application technology,
based on the method of this paper, there are several re-
lated areas, which will be the concentration of our further
research, can be extended:

1. The logic flaw within other NoSQL database based web
application: The NoSQL database we concentrate on
now is MongoDB which is a representation of NoSQL
database. Nevertheless, there are various categories of
NoSQL database, e.g., columnar storage, graph stor-
age, key-value storage, XML storage. Each kind of
NoSQL database has its corresponding characteristics,
these features may bring new challenges which may be
worth studying.

2. Other kinds of vulnerabilities within NoSQL database
based web application: The approach we present in this
paper is target on logic flaws within NoSQL database
based web applications. Meanwhile, our work solves
the challenges brought by NoSQL database. It is worth

Shuo Wen et al. / Toward Discovering Logic Flaws within MongoDB-based Web Applications 11

considering whether NoSQL database will bring chal-
lenges to other security problem, such as input valida-
tion vulnerabilities.

In summary, this paper makes progress on discovering logic
flaws within MongoDB-based web applications and has the
value of practical application. The progress also has some
reference value on further research of web application secu-
rity.

Shuo Wen received his B.S. in Computer
Science and Technology from Nankai Uni-
versity, China, in 2009. Currently, he is a
Ph.D. student at the Institute of Machine
Intelligence, College of Computer and Con-
trol Engineering, Nankai University, China.

His research area includes networking and
distributed systems with a focus on web ap-
plications and services and cloud computing.
His research goal is to provide application

and data integrity and privacy for next generation networking
and distributed systems.

E-mail: wenshuo@mail.nankai.edu.cn (Corresponding author)

Yuan Xue received her B.S. in Com-
puter Science from Harbin Institute of
Technology, China, in 1998 and her M.S.
and Ph.D. in Computer Science from the
University of Illinois at Urbana-Champaign
in 2002 and 2005. Currently, she is an assis-
tant professor at the Department of Electri-

cal Engineering and Computer Science of Vanderbilt University.
Her research area includes networking and distributed systems

with a focus on wireless andmobile systems, web applications and
services, clinical information system and cloud computing. Her
research goal is to provide performance optimization, quality of
service support, application and data integrity and privacy for
next generation networking and distributed systems.

Prof. Xue is a NSF CAREER Award winner.
E-mail: yuan.xue@vanderbilt.edu

Jing Xu has been a professor of Nankai
University in the institute of machine intelli-
gence since 2006.

Her research fields include software en-
gineering, software testing and information
technology security evaluation.

Prof. Xu is a member of China com-
puter federation, software engineering tech-
nical committee.

E-mail: xujing@nankai.edu.cn

Li-Ying Yuan received her B.S. in
Computer Science and Technology from
Nankai University, China, in 2014. Cur-
rently, she is an M.S. student at the In-
stitute of Machine Intelligence, College of
Computer and Control Engineering, Nankai
University, China.

Her research area includes software anal-
ysis.

E-mail: yuanliying@mail.nankai.edu.cn

Wen-Li Song received her B.S. in Com-
puter Science and Technology from Nankai
University, China, in 2013. Currently, she is
an M.S. student at the Institute of Machine
Intelligence, College of Computer and Con-
trol Engineering, Nankai University, China.

Her research area includes software anal-
ysis.

E-mail: wenli.song@foxmail.com

Hong-Ji Yang is a Professor in Centre
for Creative Computing, Bath Spa Univer-
sity, Bath, England.

He has taken part in many important in-
ternational conference, such as International
Conference on Software Maintenance, the
8th IEEE Workshop on Future Trends of
Distributed Computing Systems, the 26th
Annual International Computer Software
and Applications conference, etc. He is also

the leader of Software Evolution and Reengineering Group at the
Software Technology Research Laboratory.

Prof. Yang has become IEEE Computer Society Golden Core
Member since 2010, also, he is a member of EPSRC Peer Review
College since 2003.

E-mail: hyang@dmu.ac.uk

Guan-Nan Si received the PhD degree
from Nankai University, Tianjin, China, in
2011. He is currently an assistant professor
of Shandong Jiaotong University.

His research interests are software engi-
neering and software evaluating technology.

E-mail:siguannan@163.com

References

[1] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vi-
gna, “Swaddler: An approach for the anomaly-based
detection of state violations in web applications,” in
Proceedings of the 10th International Conference on
Recent Advances in Intrusion Detection, RAID’07,
pp. 63–86, 2007.

[2] DB-Engines Ranking, July 2014. http://db-

engines.com/en/ranking.

[3] P. Bisht, T. Hinrichs, N. Skrupsky, and V. N.
Venkatakrishnan, “Waptec: Whitebox analysis of web
applications for parameter tampering exploit construc-
tion,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11,
pp. 575–586, ACM, 2011.

[4] S. Son, K. S. McKinley, and V. Shmatikov, “Rolecast:
Finding missing security checks when you do not know
what checks are,” in Proceedings of the 2011 ACM In-
ternational Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA
’11, pp. 1069–1084, ACM, 2011.

[5] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,
“Toward automated detection of logic vulnerabilities in
web applications,” in Proceedings of the 19th USENIX
Conference on Security, USENIX Security’10, pp. 10–
10, USENIX Association, 2010.

12 International Journal of Automation and Computing X(X), X X

[6] X. Li, W. Yan, and Y. Xue, “Sentinel: Securing data-
base from logic flaws in web applications,” in Proceed-
ings of the Second ACM Conference on Data and Ap-
plication Security and Privacy, CODASPY ’12, pp. 25–
36, ACM, 2012.

[7] X. Li, X. Si, and Y. Xue, “Automated black-box de-
tection of access control vulnerabilities in web appli-
cations,” in Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy, CO-
DASPY ’14, pp. 49–60, ACM, 2014.

[8] A. Doupé, B. Boe, C. Kruegel, and G. Vigna, “Fear the
EAR: Discovering and mitigating execution after redi-
rect vulnerabilities,” in Proceedings of the 18th ACM
Conference on Computer and Communications Secu-
rity, CCS ’11, pp. 251–262, ACM, 2011.

[9] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and
V. N. Venkatakrishnan, “NoTamper: Automatic black-
box detection of parameter tampering opportunities
in web applications,” in Proceedings of the 17th ACM
Conference on Computer and Communications Secu-
rity, CCS ’10, pp. 607–618, ACM, 2010.

[10] A. Doupé, L. Cavedon, C. Kruegel, and G. Vi-
gna, “Enemy of the state: A state-aware black-box
web vulnerability scanner,” in Proceedings of the 21st
USENIX Conference on Security Symposium, Secu-
rity’12, USENIX Association, 2012.

[11] G. H. Mealy, “A method for synthesizing sequential
circuits,” Bell System Technical Journal, vol. 34, no. 5,
pp. 1045–1079, 1955.

[12] F. Sun, L. Xu, and Z. Su, “Static detection of access
control vulnerabilities in web applications,” in Pro-
ceedings of the 20th USENIX Conference on Security,
SEC’11, USENIX Association, 2011.

[13] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and
J. Abramov, “Security issues in nosql databases,” in
Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2011 IEEE 10th Interna-
tional Conference on, pp. 541–547, Nov 2011.

[14] L. Aniello, S. Bonomi, M. Breno, and R. Baldoni, “As-
sessing data availability of cassandra in the presence
of non-accurate membership,” in Proceedings of the
2Nd International Workshop on Dependability Issues
in Cloud Computing, DISCCO ’13, pp. 2:1–2:6, ACM,
2013.

[15] P. Chapman and D. Evans, “Automated black-box de-
tection of side-channel vulnerabilities in web appli-
cations,” in CCS’11: Proceedings of the 18th ACM
conference on Computer and communications security,
pp. 263–274, 2011.

[16] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai,
“Web application security assessment by fault injection
and behavior monitoring,” in WWW’03: Proceedings
of the 12th international conference on World Wide
Web, pp. 148–159, 2003.

[17] M. Martin and M. S. Lam, “Automatic generation of
xss and sql injection attacks with goal-directed model
checking,” in USENIX’08: Proceedings of the 17th con-
ference on USENIX Security symposium, pp. 31–43,
2008.

[18] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secu-
bat: a web vulnerability scanner,” in WWW’06: Pro-
ceedings of the 15th international conference on World
Wide Web, pp. 247–256, 2006.

[19] M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis:
preventing authentication & access control vulnerabil-
ities in web applications,” in USENIX’09: Proceedings
of the 18th conference on USENIX security symposium,
pp. 267–282, 2009.

[20] B. Parno, J. M. McCune, D. Wendlandt, D. G. An-
dersen, and A. Perrig, “CLAMP: Practical prevention
of large-scale data leaks,” in Oakland’09: Proceedings
of the 30th IEEE Symposium on Security and Privacy,
2009.

[21] X. Li and Y. Xue, “Block: A black-box approach for
detection of state violation attacks towards web ap-
plications,” in Proceedings of the 27th Annual Com-
puter Security Applications Conference, ACSAC ’11,
pp. 247–256, ACM, 2011.

[22] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vi-
gna, “Multi-module vulnerability analysis of web-
based applications,” in Proceedings of the 14th ACM
Conference on Computer and Communications Secu-
rity, CCS ’07, pp. 25–35, ACM, 2007.

[23] S. Son, K. S. McKinley, and V. Shmatikov, “Fix me up:
Repairing access-control bugs in web applications.,”
in Network and Distributed System Security (NDSS)
Symposium, NDSS 13, February 2013.

[24] L. Xing, Y. Chen, X. Wang, and S. Chen, “Integuard:
Toward automatic protection of third-party web ser-
vice integrations,” in Network and Distributed Sys-
tem Security (NDSS) Symposium, NDSS 13, February
2013.

[25] G. Pellegrino and D. Balzarotti, “Toward black-box de-
tection of logic flaws in web applications,” in Network
and Distributed System Security (NDSS) Symposium,
NDSS 14, February 2014.

[26] X. Li and Y. Xue, “Logicscope: Automatic discovery of
logic vulnerabilities within web applications,” in Pro-
ceedings of the 8th ACM SIGSAC Symposium on In-
formation, Computer and Communications Security,
ASIA CCS ’13, pp. 481–486, ACM, 2013.

[27] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to
shop for free online - security analysis of cashier-as-a-
service based web stores,” in Oakland’11: Proceedings
of the 32nd IEEE Symposium on Security and Privacy,
2011.

Shuo Wen et al. / Toward Discovering Logic Flaws within MongoDB-based Web Applications 13

[28] R. Wang, S. Chen, and X. Wang, “Signing me onto
your accounts through facebook and google: A traffic-
guided security study of commercially deployed single-
sign-on web services,” in Oakland’12: Proceedings of
the 2012 IEEE Symposium on Security and Privacy,
pp. 365–379, 2012.

[29] Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei,
“Inferring dependency constraints on parameters for
web services,” in Proceedings of the 22nd international
conference on World Wide Web, WWW ’13, pp. 1421–
1432, 2013.

[30] A. Guha, S. Krishnamurthi, and T. Jim, “Using static
analysis for ajax intrusion detection,” in WWW’09:
Proceedings of the 18th international conference on
World Wide Web, pp. 561–570, 2009.

[31] A. Krishnamurthy, A. Mettler, and D. Wagner, “Fine-
grained privilege separation for web applications,” in
WWW’10: Proceedings of the 19th international con-
ference on World Wide Web, pp. 551–560, 2010.

[32] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D.
Ernst, “Automatic creation of sql injection and cross-
site scripting attacks,” in ICSE ’09: Proceedings of the
31st International Conference on Software Engineer-
ing, pp. 199–209, 2009.

[33] P. Saxena, S. Hanna, P. Poosankam, , and D. Song,
“Flax: Systematic discovery of client-side validation
vulnerabilities in rich web applications.,” in NDSS’10:
Proceedings of the 17th Annual Network and Dis-
tributed System Security Symposium, 2010.

	Article coversheet Springer
	Toward discovering logic flaws

