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CITIZEN SCIENCE
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3College of Liberal Arts (CoLA), Bath Spa University, Newton St Loe, Bath, BA2 9BN, UK

Abstract: The ecological degradation of urban rivers and streams has been termed the ‘urban stream syndrome’
and attributed to increased catchment urbanization. Limiting future degradation requires an understanding of
the drivers of reduced water quality at both catchment and site scales. The goal of this study was to identify the
probable drivers of turbidity in river ecosystems in highly urbanized areas, under the premise that turbidity does
not respond consistently to urbanization. Catchment-scale data were compiled from remotely sensed datasets,
whereas local-scale data were collected by citizen scientists as part of the global FreshWater Watch (FWW) pro-
gram. The local-scale data included nearly 2600 coincident measurements of turbidity and observations of other
local characteristics taken with a commonmethod betweenMarch 2013 and June 2016 across 127 unique locations
in 6 major population centers: Vancouver (Canada), São Paulo (Brazil), Curitiba (Brazil), Buenos Aires (Argentina),
Hong Kong SAR (China), and Guangzhou-Foshan (China). Catchment- and site-scale information were modeled
with Boosted Regression Trees (BRT) to identify likely drivers of increased turbidity both across the entire dataset
and within individual cities. Urbanization was not consistently associated with turbidity. The global BRT model
explained 60% of the variation in turbidity, and key predictors were catchment area, % of the catchment as grass-
land, rainfall, Gross Domestic Product, and % of the catchment as artificial surfaces. City-specific BRT models ex-
plained 35–67% of the variation in turbidity. Key predictors varied between cities and were often different than
those observed at the global scale. Local-scale data collected by citizen scientists were less predictive of turbidity
than catchment-scale factors and explained ~12% of the observed global variability in turbidity. Factors such as
riverbank vegetation and the presence of point pollution sources explained some of the variation in turbidity, in-
dicating their management could help mitigate elevated turbidity and sediment load in some urban rivers. Through
this high-resolution, site-scale information, we highlight how community-sourced data may add value to freshwa-
ter monitoring programs.
Key words: NTU, turbidity, land use, catchment, water quality, urbanization, urban stream syndrome, boosted re-
gression trees

Securing access to an adequate supply of quality freshwater
is a major challenge in much of the world, especially in ar-
eas undergoing urbanization. Currently, 75% of the popu-
lation in developed countries lives in urban areas (i.e., cit-
ies, towns, and suburbs), and 60% of the global population
is expected to live in urban areas by 2030 (Paul and Meyer
2001, Cohen 2006, UNPD 2014). Continued urbanization
represents a threat to freshwater ecosystems andmajor ser-
vices, such as freshwater supply, flood mitigation, carbon

storage, and soil fertility (Eigenbrod et al. 2011). The deg-
radation of stream ecosystems caused by catchment ur-
banization is a recurring issue across the globe (Paul and
Meyer 2001, Peters 2009,Walters et al. 2009), and has been
referred to as the ‘urban stream syndrome’ (Walsh et al.
2005b). Major changes associated with this syndrome in-
clude: increases in the quantity and variety of pollutants in
runoff, more erratic hydrology caused by increased imper-
vious surface area and runoff conveyance, increased water

E-mail addresses: 4leticia.m.ch@gmail.com; 5eleanore.heasley@kcl.ac.uk; 6sloiselle@earthwatch.org.uk; 7i.thornhill@bathspa.ac.uk

DOI: 10.1086/703460. Received 14 July 2017; Accepted 13 October 2018; Published online 11 April 2019.
Freshwater Science. 2019. 38(2):303–320. © 2019 by The Society for Freshwater Science. 303



temperatures caused by riparian vegetation loss and warm-
ing of surface runoff on exposed de-vegetated artificial sur-
faces, reduction inchannel andhabitat complexity, channel-
ization, and restricted interactions between the river and its
land margin (Paul and Meyer 2001, Roy et al. 2003, Bern-
hardt and Palmer 2007, Vairavamoorthy et al. 2008, O’Dris-
coll et al. 2010). A deeper understanding of the relationship
between stream characteristics and the type of urban devel-
opment can provide valuable guidance for themanagement
and restoration of urban streams and the associated down-
stream ecosystems (Meyer et al. 2005, Wenger et al. 2009).

In this study, we explore the effect of urbanization on
streamwater turbidity at both the catchment and site scales.
Turbidity occurs when dissolved or particulate matter in-
creases the scattering and absorption of visible radiation in
water. This matter can be either organic, such as algae, or
inorganic (Henley et al. 2000, Wenger et al. 2009). Sub-
stantial increases in turbidity may influence habitat quality,
light penetration, nutrient dynamics, and algal and bacte-
rial growth. Changes in local stream ecology at the individ-
ual,population,andcommunity levels inresponsetoincreas-
ing turbidity have also been reported (Ryan 1991, Henley
etal.2000,Waltersetal.2003,Paule-Mercadoetal.2016). In-
creased turbidity, relative to natural background values, has
been associated with an increase of urban land cover. Exam-
ples include Georgia (USA; Roy et al. 2003), Seattle (USA;
Brett et al. 2005), and South Korea (Chang 2008). Neverthe-
less, the effect of urbanization on turbidity remains unclear.
Walsh et al. (2005b) reviewed the general symptoms as-
sociated with the urban stream syndrome and found that
suspended solids (TSS) had an inconsistent response to ur-
banization. We expected to find a similar inconsistent rela-
tionship between urbanization and turbidity in this study,
as turbidity is high correlated with TSS (Huey and Meyer
2010, Rügner et al. 2013, West and Scott 2016).

A major challenge in mitigating elevated turbidity in ur-
ban areas is the limited availability of local information. The
collection of data through the FreshWater Watch (FWW)
program (Loiselle et al. 2017) presents an excellent oppor-
tunity to study turbidity in urban areas that are in different
geographic regions. Large-scale studies of water quality are
rare because of methodological inconsistencies that limit
data comparison. The FWW program avoids this problem
as all participants follow a consistent methodology when
they collect water quality data and record information on
land and river conditions. Data collected by FWW partici-
pants have been used to study the drivers of eutrophication
and algal blooms (Cunha et al. 2017, Zhang et al. 2017). In
this study, we used FWW data to assess the relevance of
data collected by citizen scientists in the study of turbidity
and to identity which factors potentially influence turbidity
across a wide range of urban settings. To do so, we used
data fromVancouver (Canada), São Paulo (Brazil), Curitiba
(Brazil), Buenos Aires (Argentina), Hong Kong SAR (China),
and Guangzhou-Foshan (China).

METHODS
We used boosted regression trees to model the relation-

ship between stream water turbidity measured by FWW
participants and local- and catchment-scale environmental
conditions.Turbidityandother site-scale information(bank
vegetation and land use) were gathered by FWW partici-
pants. In addition, rainfall was calculated at the site scale
from spatial datasets. Catchment-scale information (land use,
population density, Gross Domestic Product [GDP], and
catchment morphologic characteristics) was extracted from
available spatial datasets (Table 1). Of all the variables, pro-
portion of artificial surfaces in the catchment (as part of land
use), GDP, and population density are probably most closely
associated with urbanization. To study the potential influ-
ence of urbanization and other factors on turbidity, we ran
1 model with all the sampled sites and variables (hereafter
‘global model’) and 1 model for each city. To assess the use-
fulness of the information collected by citizen scientists, we
then ran 1 model with only turbidity and citizen science de-
rived information.

Site-scale information
Data used at the site-scale were turbidity, bank vegeta-

tion, and local land use that were recorded by FWWpartic-
ipating citizen scientists and rainfall obtained from a global
database (Kanamitsu et al. 2002).

The FWW program (freshwaterwatch.thewaterhub
.org) is an Earthwatch platform that helps citizen scientists
study their local freshwater ecosystems with methods that
are consistent across the globe. The platform was launched
in 2012 and supports global and localmonitoring by follow-
ing a set of core global protocols, with parameters added lo-
cally as required. All participants are trained to collect data
following common methods (Castilla et al. 2015; https://
freshwaterwatch.thewaterhub.org), which they can upload
directly to a global database with a smartphone application
or website portal. Site selection, sampling frequency, and
the collection of additional variables depend on the objec-
tives of each local project. Sample collection in the FWW
programwas not always consistent because of the flexibility
afforded to participants and local projects, which resulted
in samples that were not evenly spread temporally or spa-
tially. These differences could bias results toward types of
sites or climatic conditions that are most common. To re-
duce this bias andmake ourmodelmore robust, we selected
data from sites with similar numbers of samples and with
representation across the seasons.

In this study, we included 127 rivers and stream sites
within 6 urban stream catchments that were sampled at
least 1 time each season betweenMarch 2013 and June 2016
(Fig. 1). Study locations,with their respective number of sam-
ple sites, included Buenos Aires (n 5 18; Argentina), Curi-
tiba (n 5 26; Brazil), Guangzhou (n 5 19; China), Hong
Kong SAR (n 5 21; China), São Paulo (n 5 23; Brazil),
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and Vancouver (n5 20; Canada). The combined dataset in-
cluded 2565 coincident measurements of turbidity and ob-
servationsof site-scale information (i.e., bank vegetationand
land use). Geographic coordinates and measurement times
were recorded for each sample (Tables S1–S6).

Citizen scientists used calibrated Secchi tubes tomeasure
turbidity with detection limits between 12 and 240 NTU
(Tyler 1968, Preisendorfer 1986, Wernand 2010). Secchi
depth has been successfully used in citizen science pro-
grams (Lathrop et al. 1996, Bruhn and Soranno 2005, Lottig
et al. 2014) to provide robust estimates of turbidity that are
comparable to scatterometer, turbidity, and suspendedpartic-
ulatemeasurements taken by professional scientists (Obrecht
et al. 1998, Canfield et al. 2002, Castilla et al. 2015). In this
study, a significant number of observations were below or
above detection limits. Consequently, turbidity measure-
ments equal to, or below the lower detection limit (44% of
samples) were recorded as 12 NTU, and those equal to or

above theupperdetection limit (3%of samples)were recorded
as 240 NTU. The lower detection limit of the Secchi tube is
a function of its length. To achieve a 5 NTU detection limit
(a typical value for perceived turbidity in natural waters,Myre
and Shaw 2006), the Secchi tube would need to be nearly
2� its actual lengthof48cm.Theuseof such long tubeswould
have further complicated measurements and increased costs
of this global project. The 48-cm long tube was a compro-
mise between costs and detection limits, which limited
the interpretability of turbidity levels in rivers with low tur-
bidity.

At each site, citizen scientists also recorded information
about presence/absence of riverbank cover (trees/shrubs,
grass, bare ground), presence of point discharge sources of
pollution, and dominant land use in the immediate vicinity
of the sampling site (i.e., urban residential, urban park, in-
dustrial, agriculture, forest, and grassland and shrubs) (Ta-
ble 1). These measurements were based on a reach length

Table 1. List of candidate predictors used in the boosted regression tree modeling. GIS 5 Geographic Information System, Spatial data.
CS 5 data collected by citizen scientists. FAO GeoNetwork 5 Food and Agriculture Organization of the United Nations (http://
www.fao.org/geonetwork/srv/en/main.home). WWF 5 World Wildlife Fund (http://hydrosheds.org/). SEDAC GPW 5 Socioeconomic
Data and Applications Center of NASA, Gridded Population of the World (http://sedac.ciesin.columbia.edu/data/collection/gpw-v4).
Global Risk Data Platform, World Bank (https://preview.grid.unep.ch/). FWW 5 FreshWater Watch (https://freshwaterwatch
.thewaterhub.org/). SEDAC NCEP 5 Socioeconomic Data and Applications Center of NASA, National Center for Environmental
Prediction (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html)

Variable Unit/measure Type of data Source of information

C
at
ch
m
en
t
Sc
al
e

Artificial surfaces % coverage GIS FAO GeoNetwork

Cropland % coverage GIS FAO GeoNetwork

Grassland % coverage GIS FAO GeoNetwork

Tree covered areas % coverage GIS FAO GeoNetwork

Shrub covered areas % coverage GIS FAO GeoNetwork

Catchment area km2 GIS WWF

Catchment slope % GIS WWF

Population density people/km2 GIS SEDAC GPW-v4

Gross Domestic Product thousands of constant
2000 USD

GIS Global Risk Data Platform,
World Bank

Terrestrial ecoregions categorical GIS WWF

Si
te

Sc
al
e

Turbidity NTU CS FWW

Average 72 h rainfall mm/h GIS SEDAC NCEP

Riverbank bare ground presence/absence CS FWW

Riverbank grass presence/absence CS FWW

Riverbank trees and shrubs presence/absence CS FWW

Point source discharge presence/absence CS FWW

Urban residential presence/absence CS FWW

Urban park presence/absence CS FWW

Industrial presence/absence CS FWW

Agriculture presence/absence CS FWW

Forest presence/absence CS FWW

Grassland and shrubs presence/absence CS FWW

Season categorical – –
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of 50 m upstream from the sampled site, widths of 50 m on
each side of the river for riverbank characteristics and pol-
lution sources, and widths of 100 m for land use.

Weattributedeachmeasurement toa season(spring, sum-
mer, autumn, and winter) as a categorical variable to assess
the effects of climatic variability. Average rainfall was calcu-
lated for the 72 h period prior to each sampling event with
data from the Physical Sciences Division of the National
Oceanic and Atmospheric Administration (Kanamitsu et al.
2002).Weused theRNCEPpackage inR, following themeth-
ods described in Kemp et al. (2012), to average the rainfall
data at a spatial resolution of 30 arc-seconds (~1 km).

Catchment-scale information
In addition to the information collected at the site scale,

weobtainedcatchment-scalespatial informationsuchas land

use, demographic variables, climate variables, and catch-
ment morphology characteristics.

Weused theWatershedTool in theHydrology Toolbox in
ArcMap10.4.1 (ESRI,Redlands,California) to calculateflow
directions from 3 arc-second (~100 m) resolution WWF-
HydroSHEDS (hydrosheds.org) maps (Lehner et al. 2008).
We then used the Zonal Statistic as Table function within
the Spatial Analyst Tools inArcMap to calculate landuse, de-
mographic variables, andecoregionswithineach catchment.

We used the Global Land Cover SHARE (GLC-SHARE)
database to obtain land cover information. GLC-SHARE is
a land cover database created by the Land and Water Divi-
sion of the Food andAgricultureOrganization of theUnited
Nations (FAO) that combines the best available high reso-
lution national, sub-national, and regional information to
produce a global map with a resolution of 30 arc-seconds
(Latham et al. 2014). For China and Canada, the FAO used

Figure 1. Study sites, urban areas, and their global context. The black circles in the center rectangle of this figure represent each
of the 6 regional study locations. The black circles in the outside rectangle represent each site within each city. The number of sites
in each city is indicated by an n in the figure. Some local catchments boundaries are hidden because of their close proximity to others
or because they are too small to be visible at the map scale.
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regional base information to create GLC-SHARE coverages
(Landsat 2002 for China, and MODIS and FAO LCCS2005
forCanada),whereas forBrazil andArgentina, theFAOused
global information (GlobCover 2009, MODIS VCF 2010,
Croplanddatabase 2012).TheGLC-SHAREproduces a uni-
fied classification of the spatial information that includes
the following categories: artificial surfaces, cropland, grass-
land, tree-covered area, shrub-covered area, herbaceous veg-
etation, mangroves, sparse vegetation, bare soil, water bod-
ies, and snow and glacier cover.

We selected 2 demographic variables, population density
and GDP as they are often used as indicators of the type of
urban development present and the intensity of economic
activities in urban areas. Population density was obtained
from the Gridded Population of theWorld (GPWv4; CIESIN
2016). We used the GDP information from 2010 provided
byTheWorldBank (available at preview.grid.unep.ch). Both
datasets have a spatial resolution of 30 arc-seconds (~1 km).

We used the terrestrial ecoregions defined byOlson et al.
(2001) (worldwildlife.org/publications/terrestrial-ecoregions
-of-the-world) to assess the effects of regional differences in
climate on turbidity.

Finally, we included catchment area and average catch-
ment slope variables to represent catchment morphology.
Catchment area was extracted from the attribute table of
the catchments delineated in ArcMap. The slope for each
catchment was calculated with the Slope Tool in Spatial An-
alystTools (ArcMap10.4.1) basedon3arc-second (~100m)
resolution digital elevation model, WWF-HydroSHEDS
(hydrosheds.org).

Data analyses
Weused individual (not averaged)measurements of tur-

bidity and associated site- and catchment-scale observa-
tions in all models.

We used boosted regression trees (BRT) to identify as-
sociations between turbidity and urbanization variables. By
fitting BRT, we were also able to identify which citizen sci-
entist acquired data weremost strongly associatedwith tur-
bidity. BRTcombine the strengths of regression trees (mod-
els that relate a response to their predictors by recursive
binary splits) and boosting (an adaptive method for com-
bining many simple models to improve predictive perfor-
mance) (Friedman 2001, Elith et al. 2008). In BRT, simple
regression trees are fit iteratively to produce a single model.
The first regression tree is selected to minimize the loss of
information, and in each following step, model accuracy is
improved by fitting a tree that reduces the residual deviance
(error in the prediction) of the previous tree. The final BRT
model is an additive regression model in which individual
terms are trees (Elith et al. 2008). We created BRT models
with the gbm package (version 2.1.1; Ridgeway 2015) in
R 3.0.1 (R Core Development Team 2018).

BRTmodels require 3 parameters to be set: learning rate,
bag fraction, and tree complexity (Elith et al. 2008). Learn-
ing rate, or shrinkage parameter, determines the contribu-
tion of each tree to the growingmodel. Slower learning rates
result in better predictions, but this demand must be bal-
anced with computing resources and time. Learning rate
was set as 0.01 for the global model, and 0.001 for the mod-
els at city-scales and the model with citizen scientist data.
Bag fraction is the proportion of data used at each step to
fit a treemodel.Thebag fraction is extracted at randomfrom
the dataset. The addition of stochasticity improves the ac-
curacy and speed of boostedmodels and reduces overfitting
(Friedman 2002, Elith et al. 2008). In the global model the
bag fraction was 0.6 (i.e., 60% of the data), whereas the
city-scale and the citizen scientist model had bag fractions
of 0.7 (i.e., 70%). The increase in the bag fraction in the
city and citizen scientist models is because of the relatively
smaller datasets. Tree complexity refers to the maximum
number of nodes in a tree and limits the maximum number
of interactions among predictors (Elith et al. 2008). This pa-
rameter was set at 5 for all models.

BRT, like many other statistical approaches, are vulner-
able to model overfitting when input variables are highly
correlated (Olden et al. 2008). Therefore, before introduc-
ing the predictors in the model, we used Spearman correla-
tions to determine the correlations between variables (Ta-
bles S7–S13). When predictors were correlated (rs > 0.7),
we only retained 1 of the correlated predictors in the model
(Dormann et al. 2013).Whenpossible, we retained the same
variables for all the models to facilitate the discussion of the
results. We calculated correlations with the rcorr function
in the R Hmisc package (version 3.15; Harrel and Dupont
2015). We log-transformed and then standardized continu-
ous predictor variables as that improved the interpretation
of the BRT models. We used the rescale formula in the R
scales package (version 2.1.3; Ridgeway 2015).

We fit the models with the function gbm.step in the R
gbm package. This function fits a BRT model with cross-
validation to estimate the optimal number of trees. After fit-
ting the model, we used k-fold cross validation with gbm
.simplify in the R gbm package to assess whether there were
non-informative predictors that could be removed to im-
prove the model (Elith et al. 2008). The relative importance
of each BRT model parameter was scaled so that the sum
of all parameters was 100. A higher percentage of a variable
indicates stronger relative importance on the response. Var-
iables with a smaller model importance than that expected
by chance (100% divided by the number of variables) were
considered irrelevant for interpretation (Müller et al. 2013).
We created partial dependence plots for each model variable
to describe the relationship between predictors and turbid-
ity. Partial dependence plots show the effect of a variable on
turbidity (the variable response) after accounting for the av-
erage effects of all other variables in themodel (marginal ef-
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fect) (Pearson 2017). These plots provide a visual basis for
interpretation of results.

RESULTS
Data overview

Here, we briefly describe patterns of variation in turbid-
ity and the predictor variables at the catchment- and site-
scales across the dataset as a whole and by city (Figs 2A–J,

3A–K). Turbidity measurements covered the full range of
detection at both global- and city-scales (i.e., 12–240NTU).
Globally, turbidity averaged 38NTU, with a large difference
between cities. For example, turbidity was highest in São
Paulo (mean5 77 NTU), and lowest in Vancouver (mean5
16 NTU) (Fig. 2A).

Globally, the studied catchments were covered predom-
inantly by trees (range 0–93%, mean 5 30%; Fig. 2E) and
artificial surfaces (range 0–100%, mean 5 29%; Fig. 2B),

Figure 2. Boxplots showing variation among sites within each city in turbidity and 9 catchment-scale predictors: turbidity (A), arti-
ficial surfaces (B), cropland (C), grassland (D), tree covered areas (E), shrub covered area (F), catchment area (G), catchment slope
(H), population density (I), GDP (J). Horizontal bars represent the means; the box ends indicate the 25th and 75th percentiles; whis-
kers indicate the 10th and 90th percentiles; circles indicate outliers. BA 5 Buenos Aires, Cu 5 Curitiba, G 5 Guangzhou, HK 5 Hong
Kong, SP 5 São Paulo, and V 5 Vancouver, GDP 5 gross domestic product.
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with theexceptionofBuenosAires,where thedominant land
use was cropland (range 0–57%, mean 5 29%; Fig. 2C).
Grassland was least abundant across study sites (range 0–
17%, mean5 3%; Fig. 2D). Catchment size also varied con-
siderably among cities. Buenos Aires and São Paulo had
the largest catchments in this study and were on average
>300 km2(Buenos Aires: range 0.5–3600 km2, São Paulo:

range 0.5–3200 km2), whereas Hong Kong and Guangzhou
hadthesmallest catchmentsaveraging<50km2(HongKong:
range0.6–81km2,Guangzhou:0.1–92km2)(Fig.2G).Catch-
ment slope ranged from a mean of 1.3% in Buenos Aires
(range 0.9–1.9%) to a mean of 23% in Hong Kong (range
4.8–37.6%) (Fig. 2H). Average population density was 4000
people/km2 in the studied cities (range 20–22,000 people/

Figure 3. Boxplots showing variation among sites within each city in 11 site-scale predictors: urban residential (A), industrial (B),
urban park (C), grassland and shrubs (D), forest (E), trees/shrubs (riverbank trees and shrubs) (F), grass (riverbank grass) (G), bare
ground (riverbank bare ground) (H), discharge (point source discharge) (I), agriculture (J), and rain (average 72 h rainfall) (K). ‘% of
sites’ refers to the percentage of sites with the attribute present. Horizontal bars represent the means; the box ends indicate the 25th

and 75th percentiles; whiskers indicate the 10th and 90th percentiles; circles indicate outliers.
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km2), with maximum values in São Paulo (average: 12,000
people/km2, range: 2900–22,000 people/km2) (Fig. 2I). GDP
(in US dollars set to the year 2000) was highest in Hong
Kong (average 170,500; range 4200–666,000) and São Paulo
(average 118,750; range 13,840–789,400), and lowest in
Guangzhou (average 7500; range 295–94,000) (Fig. 2J). Cu-
ritiba, Guangzhou, Hong Kong, and São Paulo are located in
the ‘tropical/subtropical moist broadleaf forest’ ecoregion,
Vancouver is in the ‘temperate coniferous forest’ ecoregion,
and Buenos Aires is in the ‘temperate grasslands, savannas,
shrublands’ ecoregion.

Most of the study sites were located in residential areas
(45% of the sites; Fig. 3A). However, in Guangzhou, most of
the sampling sites (64%) were located in catchments with
substantial agricultural land cover (Fig. 3J). Approximately
75% of all study site riverbanks were tree covered (Fig. 3F),
and 72% had potential point source discharges nearby
(Fig. 3I). These values were similar among cities, with the
exception of São Paulo, where only 50% of sites had trees on
the riverbank (Fig. 3F), and Vancouver, where only 32% of
sites had potential point source discharges nearby (Fig. 3I).
Precipitation within 72 h prior to sampling was low, averag-
ing 0.2 mm/h (range 0–1.37 mm/h) at both the global and
city scales, except for Buenos Aires, which had values of
0.07 mm/h (range 0–0.78 mm/h) (Fig. 3K).

Global correlates of turbidity
The global model included 12 predictors and explained

62% of the variability in turbidity (Table 2). Optimal model
fit was achieved at 2400 trees. City, catchment area, grass-
land, average 72-h rainfall, GDP, and percentage of artificial
surfaces were important explanatory variables following the
criteria ofMüller et al. (2013) (Table 2). Partial plots showed
that cities had different turbidity levels (Fig. 4A), and that
turbidity was higher in larger catchments and in those with
a higher proportion of grassland (Table 2; Fig. 4B, C). Tur-
bidity also increased with rainfall, but it plateaued at higher
values of precipitation (Table 2; Fig. 4D). We detected a bi-
modal response of turbidity to GDP (Fig. 4E) and artificial
surfaces, where turbidity (Fig. 4F) was highest in both low-
and high-income areas and in catchments with either high
or low artificial surface coverage (Table 2).

City-scale correlates of turbidity
São Paulo The final model for São Paulo included 11 var-
iables and explained 67% of the variability in turbidity. This
model fit was achieved at 6000 trees (Table 2). The vari-
ables population density, mean catchment slope, average
72-h rainfall, GDP, and cropland catchment cover explained
most of the variability. Areas with lower population density
hadhigher turbidity (Fig. 5A), as did catchmentswith amod-
erate slope compared with either low or high slope (Fig. 5B).
The association of turbidity with rainfall in this model was
similar to that in the global model with higher values of tur-

bidity at lower rain levels (Fig. 5C). Turbidity increased with
GDP (Fig. 5D) and was higher in catchments where cropland
cover was low (Fig. 5E).

Hong Kong The final model for Hong Kong included
11 variables and explained 66% of the variation in turbidity
(Table 2). This model fit was achieved at 4350 trees. Grass-
land, artificial surface catchment cover, and average 72-h
rainfall were the most important variables. Turbidity in-
creased with the percentage of grass and artificial surfaces
in the catchment (Fig. 6A, B) and decreasedmarginally with
increased rainfall (Fig. 6C).

Guangzhou The final model for Guangzhou included
13 variables and explained 56% of the variability in turbid-
ity (Table 2). This model fit was achieved at 6500 trees. Av-
erage 72-h rainfall, catchment area, artificial surface catch-
ment cover, season, and catchment cropland cover were the
most important variables. Turbidity increased with rainfall
(Fig. 7A), with increasing catchment size (Fig. 7B), and with
a high coverage of artificial surfaces (Fig. 7C). Summer and
autumnhad thehighest values of turbidity (Fig. 7D).Turbid-
ity was higher in catchments with relatively low cropland
catchment coverage, but this relationship was not linear be-
cause therewas a peak in turbidity at high cropland coverage
(Fig. 7E).

Buenos Aires The final model for Buenos Aires included
14 variables and explained 50% of the variability in turbidity
(Table 2). This model fit was achieved at 3400 trees. Catch-
ment area, average 72-h rainfall, grassland and cropland
catchment cover, and season explained most of the vari-
ability in turbidity. Large catchments and catchments high
grassland coverage had the highest turbidity (Fig. 8A, C),
whereas catchments with low crop coverage had the lowest
turbidity (Fig. 8D). Elevated precipitation was generally as-
sociated with high turbidity (Fig. 8B), and turbidity was
lowest in the summer (Fig. 8E).

Curitiba The model for Curitiba included 13 variables
and explained 50% of the variability in turbidity (Table 2).
This model fit was achieved at 4150 trees. Average 72-h
rainfall, GDP, catchment area, and shrub and artificial sur-
face catchment cover explained most of the variability in
turbidity. Turbidity increased with higher rainfall (Fig. 9A)
in catchments with a higher GDP (Fig. 9B) and in catch-
ments with a lower proportion of artificial surfaces (Fig. 9E).
Turbidity values also increased with increasing catchment
size (Fig. 9C). Shrub cover was not strongly related to tur-
bidity as values were relatively constant across low- to mid-
values of shrub cover.Ahigher values of shrub cover, turbid-
ity initially decreased slightly with increasing shrub cover
and then increased with further increases in shrub cover
(Fig. 9D). However, this trend was of limited importance
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giventhesmall amountofvariability inturbidityexplainedby
shrub cover.

Vancouver The model for Vancouver included 13 vari-
ables and explained 52% of the variability in turbidity (Ta-
ble 2). This model fit was achieved at 2850 trees. Cropland,

average 72-h rainfall, tree cover, season, and artificial sur-
faces explainedmost of the variability in turbidity. Turbidity
increased with higher coverage of cropland (Fig. 10A) and
also in catchments with higher proportions of artificial sur-
faces (Fig. 10D). Turbidity values were higher at the lowest
and highest intensities of precipitation (Fig. 10B). Catch-

Figure 5. Partial plots for the boosted regression trees (BRT) model for turbidity in São Paulo. Plots are ordered by importance of the
covariates in the final boosted regression tree model (Table 2): population density (catchment-scale) (A), catchment slope (catchment-
scale) (B), rain (average 72 h rainfall, site-scale) (C), GDP (gross domestic product, catchment-scale) (D), cropland (catchment-scale) (E).
Dashed lines show smoothed lines of best fit. Tick marks in the inner side of the x-axes of the plots indicate the deciles (10% quantiles)
of the observed distribution of continuous predictor variables.

Figure 4. Partial plots for the boosted regression tree (BRT) models of turbidity at the global scale. Plots are ordered by importance
of the covariates in the final boosted regression tree model (Table 2): city (categorical variable) (A), catchment area (catchment-scale)
(B), grassland (catchment-scale) (C), rain (average 72 h rainfall, site-scale) (D), GDP (gross domestic product, catchment-scale)
(E), and artificial surfaces (catchment-scale) (F). Dashed lines show smoothed lines of best fit. Tick marks in the inner side of the
x-axes of the plots (B–F) indicate the deciles (10% quantiles) of the observed distribution of continuous predictor variables.
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ments with higher proportion of tree coverage were associ-
ated with high turbidity (Fig. 10C) and turbidity was highest
in winter (Fig. 10E).

Contribution of citizen scientist derived information
This global model was derived only from data collected

by FWW citizen scientists, included the 9 site scale binary
variables, and explained 11.6% of the variability in turbidity
(Table 3). The model was fitted with 3950 trees. Turbidity
tended to be higher where potential point source discharges
were identified (Table 3; Fig. 11A). In contrast, turbidity was
lower when riverbank vegetation included trees, shrubs, or
both, and when urban residential land use was the primary
land cover (Table 3; Fig. 11B, C). No models could be fit at
the city scale based on citizen scientist data alone.

DISCUSSION
Our findings suggest that turbidity did not uniformly

follow the expected patterns of the urban stream syndrome
(i.e., decrease of water quality with increased urbanization),
confirmingour initialhypothesis of an inconsistent relation-
ship between turbidity and urbanization. Factors associated

with urbanization were not themain drivers of turbidity at a
global scale, nor were they consistently associated with tur-
bidity in the city-scale models. We also found that infor-
mation collected by citizen scientists could contribute to
understanding of the drivers of turbidity and, thus, provide
information that may help inform management in urban
areas.

Turbidity and the urban stream syndrome
The main results of this study were that site location

(i.e., city) is a highly important explanatory variable for tur-
bidity, and that there is a lack of consistency in the factors
that predict turbidity at this scale. The urban stream syn-
drome describes how streams in urbanized catchments are
ecologically degraded (Paul and Meyer 2001, Meyer et al.
2005, Walsh et al. 2005a). Walsh et al. (2005b) reviewed
the symptoms of the urban stream syndrome looking for
consistent trends across geographic regions. In their review
TSS, a variable strongly correlated with turbidity (Huey and
Meyer 2010, Rügner et al. 2013, West and Scott 2016), re-
sponded inconsistently to urbanization (Walsh et al. 2005b).
Similarly, in this study we found that turbidity did not show
a consistent geographic response inurban areas.Our results,
therefore, support those of recent studies that have shown
that streamresponse tourbanizationcan vary greatly among
regions (Wenger et al. 2009, Booth et al. 2016, Capps et al.
2016). It should be noted that a significant proportion of
the turbidity measurements were below the detection limit
(12 NTU), complicating the interpretation of the lower end
of the partial plot.

Among the factors associated with urbanization in this
analysis (artificial surfaces, GDP, and population density),
at least 1 significantly explained turbidity dynamics in most
city-scale models as well as the global model. Nevertheless,
urbanization factors explained less of the variability in tur-
bidity than catchment area, proportion of grassland cover,
and rainfall. This result was not surprising as sediment load
dependsnotonlyon landuse, but alsoonclimatic conditions
and soil characteristics (Hunsaker and Levine 1995). Geol-
ogy can also have an important effect on turbidity of water
bodies (Rains et al. 2008), therefore, future studies on tur-
bidity would benefit from having an appropriate catchment
indicator of geologic erodibility.

Our study showed that the proportion of artificial sur-
faces was associated with turbidity at global and city scales,
although models differed in the relationship between these
variables. Catchment imperviousness has been highlighted
as one of themost important factors related to urban stream
degradation (Paul and Meyer 2001, Walsh et al. 2005a, b,
Wenger et al. 2009). An increase in artificial surfaces de-
creases the permeability of the catchment, which increases
surface runoff (Dunne and Leopold 1978, Booth and Jack-
son 1997,Wenger et al. 2009). Increased runoff, in turn, can
increase turbidity by increasing transport of sediments into
waterways. In our study, the global model and the models

Figure 6. Partial plots for the boosted regression tree (BRT)
models of turbidity in Hong Kong. Plots are ordered by impor-
tance of the covariates in the final boosted regression tree model
(Table 2): grassland (catchment-scale) (A), artificial surfaces
(catchment-scale) (B), rain (average 72 h rainfall, site-scale) (C).
Dashed lines show smoothed lines of best fit. Tick marks in the
inner side of the x-axes of the plots indicate the deciles (10%
quantiles) of the observed distribution of continuous predictor
variables.
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for Hong Kong and Vancouver showed this pattern; how-
ever, opposite trendswere observed in themodels forGuang-
zhou and Curitiba. A decrease in turbidity may occur when
increases in impervious surfaces cause corresponding reduc-
tions in the bare land area, which is more susceptible to ero-
sion (Moreno Madriñán et al. 2012).

On a global scale, turbidity was highest at both the low-
est and highest values of GDP, creating a U-shape relation-
ship. This association of turbidity with GDP could be related
to a transition from farming catchments to very industrial-
ized catchments, such that the lowest values of turbidity oc-
cur at intermediate levels of urbanization. The models for

Figure 7. Partial plots for the boosted regression trees (BRT) model for turbidity in Guangzhou. Plots are ordered by importance
of the covariates in the final boosted regression tree model (Table 2): rain (average 72 h rainfall, site-scale) (A), catchment area,
(catchment-scale) (B), artificial surfaces (catchment-scale) (C), season (categorical) (D), cropland (catchment-scale) (E). Dashed lines
show smoothed lines of best fit. Tick marks in the inner side of the x-axes of the plots (A–C, and E) indicate the deciles (10% quan-
tiles) of the observed distribution of continuous predictor variables.

Figure 8. Partial plots for the boosted regression trees (BRT) model for turbidity in Buenos Aires. Plots are ordered by importance
of the covariates in the final boosted regression tree model (Table 2): catchment area (catchment-scale) (A), rain (average 72 h rain-
fall, site-scale) (B), grassland (catchment-scale) (C), cropland (catchment-scale) (D), season (categorical) (E). Dashed lines show
smoothed lines of best fit. Tick marks in the inner side of the x-axes of the plots (A–D) indicate the deciles (10% quantiles) of the ob-
served distribution of continuous predictor variables.
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São Paulo and Curitiba showed that catchments with higher
GDP had higher values of turbidity. Similarly, Li et al. (2008)
reported an increase of suspended particulate matter with
economic growth and population density in the Han River
basin. The decrease in water quality with the increase in
GDP could be related to an increase in industrial or mining
activities (Zhang et al. 2009, Zhou et al. 2012).

Population density was a significant predictor of turbid-
ity only in São Paulo. In this city, turbidity was highest at
both the lowest and highest values of population density,
creating a U-shape relationship. The high levels of turbidity
in areas of low population density could be related to inter-
actions between land use types and the topography of the
landscape. For example, correlations showed that popula-

Figure 10. Partial plots for the boosted regression trees (BRT) model for turbidity in Vancouver. Plots are ordered by importance
of the covariates in the final boosted regression tree model (Table 2): cropland (catchment-scale) (A), rain (average 72 h rainfall, site-
scale) (B), tree covered area (C), artificial surfaces (catchment-scale) (D), season (categorical) (E). Dashed lines show smoothed lines
of best fit. Tick marks in the inner side of the x-axes of the plots (A–D) indicate the deciles (10% quantiles) of the observed distribu-
tion of continuous predictor variables.

Figure 9. Partial plots for the boosted regression trees (BRT) model for turbidity in Curitiba. Plots are ordered by importance of
the covariates in the final boosted regression tree model (Table 2): rain (average 72 h rainfall, site-scale) (A), GDP (gross domestic
product, catchment-scale) (B), catchment area (catchment-scale) (C), shrub covered areas (catchment-scale) (D), artificial surfaces
(catchment-scale) (E). Dashed lines show smoothed lines of best fit. Tick marks in the inner side of the x-axes of the plots indicate
the deciles (10% quantiles) of the observed distribution of continuous predictor variables.
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tiondensity inSãoPaulo increasedwith theproportionof ar-
tificial surfaces and decreased when the proportion of crop-
land, grassland, and shrubland and trees. An increase in tur-
biditywith an increase in population is consistentwith other
studies that found population density was positively corre-
lated with TSS (Huey and Meyer 2010, Rügner et al. 2013,
West and Scott 2016).

Catchment-scale predictors of turbidity
After the sampling site location (i.e., city, explained in

the previous section) the factors most strongly associated
with most of the variation in turbidity were catchment area,
percent grassland cover, average 72-h rainfall, and cropland.

Catchment area was a significant predictor of turbidity
in the global model and in the city-scale models of Guang-
zhou and Buenos Aires. This observation is consistent with
previous studies that demonstrate catchment area can have
a significant effect on stream water quality (Davies et al.
2000, Buck et al. 2004, Lawler et al. 2006b). In larger catch-
ments, an increased sediment load to the lower reaches re-
sults from an increased number of sources and transport,
resulting in an expected increase in turbidity.

Percent grassland cover in a catchment was a significant
predictor of turbidity in the global, Hong Kong, and Buenos
Aires models. Contrary to our expectations, higher grass-
land coverage was associated with higher values of turbidity
in these catchments. In a global-scale study, García-Ruiz
et al. (2015) found that high percentages of grassland cover

had lower rates of erosion, with an expected reduction in
turbidity. Similarly, Panagos et al. (2015) suggested that the
conversion of arable land to pasture would lead to a reduc-
tion in soil loss across Europe. However, Panagos et al. (2015)
also highlighted that the susceptibility of pastures to erosion
varies by region, depending on the climatic conditions and
the characteristics of the pasture. Grasslands where grazing
is significant can have an increase in sediment export and
turbidity (Trimble and Mendel 1995, Zaimes et al. 2004).
If cattle grazing in the grassland areas of the studied catch-
ments is significant, such areas would contribute to higher
values of turbidity.

Mean72-h rainfall prior to samplingwas the only explan-
atory site-scale variable that was significant in the global
model and all the city-scale models. Volume and intensity
of rainfall events are critical factors for soil erosion and sed-
iment transport (Ahearn et al. 2005, Lawler et al. 2006b, Li
et al. 2009, Fortin et al. 2015), therefore, an increase in tur-
bidity with elevated precipitations was expected. However,
rainfall and water quality in urbanized catchments have a
complex relationship (McGrane et al. 2017). In our study,
the relationship between rainfall and turbiditywas inconsis-
tent across models. In spite of the heterogeneous response
of turbidity to rainfall, turbidity plateaued at high rainfall

Table 3. Results of the global-scale BRT model, with only the
site information collected by citizen scientists. Relative variable
importance is shown in bold when it is greater than expected by
chance (after Müller et al. 2013). The symbols approximate the
marginal effects of the variable on turbidity based on partial plot
interpretation (Fig. 10), where / 5 positive and \ 5 negative.

Citizen
scientist
model

Overall variance explained by the model (%) 11.57

Number of variables 9

Tree complexity 5

Learning rate 0.001
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Point source discharge 26.0 /

Riverbank trees and
shrubs

24.6 \

Urban residential 13.3 \

Forest 8.6

Agriculture 8.0

Riverbank grass 6.3

Urban park 6.1

Riverbank bare ground 5.1

Grassland and shrubs 2.1

Figure 11. Partial plots for the boosted regression trees
(BRT) model for data collected by citizen scientists only. Plots
are ordered by importance of the covariates in the final boosted
regression tree model (Table 3). Discharge (point source dis-
charge) (A), trees/shrubs (riverbank trees and shrubs) (B), ur-
ban residential (C).
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values in all models, suggesting dilution effects. This effect
is often seen in combined sewer systems (systems that route
both sewage and storm water together), where an initial in-
crease in particulate concentrations from runoff is followed
by adecrease related to dilution (Gupta and Saul 1996,Mor-
gan et al. 2017). However, this ‘first flush’ action does not
always occur in urbanized rivers (Deletic and Maksimovic
1989, Lawler et al. 2006a). Another explanation for the het-
erogeneity in response to rainfall could be that relatively few
high-precipitation events were included in the dataset. A
limitation of citizen scientist acquired data is that sampling
in the rain, or soon after high-rain events, is often avoided
by choice or design (Thornhill et al. 2016). Approximately
80% of the samples in this study were collected in periods
with no or little precipitation (<0.25 mm/h), and only 1%
of the samples were collected on high precipitation days
(>0.83 mm/h).

Cropland land use did not significantly explain turbidity
at global scale but was an important factor in 4 of the 6 city
models.Agricultural activity is typically associatedwithhigh
erosion rates (Allan et al. 1997, Harding et al. 1999, García-
Ruiz et al. 2015), but we only found a significant increase
of turbidity with increased cropland in Vancouver. On the
otherhand,SãoPaulo,Guangzhou,andBuenosAires showed
the opposite trend with lower values of turbidity when the
proportion of coverage of croplands in the catchments was
higher. These contradictory results could be related to the
variability in the erosion rates from agricultural areas ob-
served byGarcía-Ruiz et al. (2015) and the variety of impacts
that agriculture can have on water bodies (Harding et al.
1999). Also, the percentage of cropland in the catchment
does not consider the proximity of agricultural activities to
receiving rivers or consider the presence of any interceding
buffer areas.Both factors can influence sediment load (Omer-
nik et al. 1981, Buck et al. 2004).

Contribution of citizen scientists to the explanation
of turbidity patterns

Our study showed that site-scale factors had less power
than catchment-scale factors in predicting turbidity levels.
Several other studies have also found that landscape char-
acteristics had greater influence on water quality than the
river buffer areas (Hunsaker and Levine 1995, Sliva andWil-
liams 2001). However, other studies have found that TSS
and turbiditywere better explained by land-cover character-
istics at the riparian-buffer scale (Johnson et al. 1997, Chang
2008).Nevertheless, the information collected by citizen sci-
entists at the site scale explained 11.6% of the variability in
turbidity. This site-scale information points to the possibility
that local actions could be implemented to reduce turbidity.

The presence of locally observed point source discharges
was associatedwithhigher turbidity. These point source dis-
charges in urban areas had different origins, such as indus-
trial, residential, roads, septic systems, or stormwater drain-

age pipes. The presence of stormwater drainage inflows, the
most common type of discharge present in most urban ar-
eas, has been shown to increase turbidity during precipita-
tion events (Lawler et al. 2006b, Wenger et al. 2009). This
finding supports earlier studies that showed point-source
discharges identified by citizen scientists can be a useful pre-
dictor of water quality (e.g., nutrients, Loiselle et al. 2016).

It is well established that the presence of riverbank veg-
etation can reduce particulate concentrations throughmul-
tiplemechanisms, such as decreasing the severity of stream-
bed and riverbank erosion (Hubble et al. 2010, Gumiere
et al. 2011) and improving the retention of suspended par-
ticles in the catchment by reducing in-flow velocity (John-
son et al. 1997, Sliva andWilliams 2001). Riverbank vegeta-
tion aroundurban streams is usually structurally limited and
managed for amenity value more than for ecological value
(Wenger et al. 2009). Further, several studies have suggested
that even intact urban riparian zones have a reduced func-
tionality, as most stormwater runoff is routed directly into
streams via the stormwater network (Roy et al. 2005, 2006).
Still, the present study indicates that riverbank trees and
shrubs reduced turbidity across a range of climate andurban
settings, supporting the results of previous studies (Parkyn
et al. 2003,Wenger et al. 2009).

When urban residential cover was the main land use
around a sampling site, turbiditywas lower than in sampling
sites where urban residential cover was not the main land
use. In urban residential areas, bare land is often covered
with impervious surfaces (Moreno Madriñán et al. 2012),
so less soil may be available to erode and contribute to tur-
bidity. Additionally, the density of the storm water network
is often higher in urban residential areas, which disconnects
the river channel from nearby overland runoff. These fac-
tors may explain why we found a stronger relationship be-
tween turbidity and point source discharges than with ur-
ban residential land cover.

Conclusions
The growing availability of both catchment-scale data

and citizen scientist generated site-scale data allows for new
insights into the turbidity dynamics at both global and local
scales. This information is fundamental to improving man-
agement and decision making in areas where the urbaniza-
tion of peri-urban andnatural areas is significant. This study
provided evidence that a multiscale approach can be used,
addressing site-scale factors through local actions, in com-
bination with catchment planning to reduce turbidity levels
andmaintain a functioning river environment. For example,
creating and maintaining vegetated riverbanks in cities and
promoting better management of point-source discharges
could contribute to the reduction of turbidity. With further
refinement, community-based monitoring (e.g., citizen sci-
ence) is a promising method to gather site-scale informa-
tion in largeurbanareas andhelp evaluate and improve river
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conditions as well as improve the knowledge of local com-
munities.

Furthermore, the participation of local communities in
rivermanagement is important for creatingmore integrated
catchment management plans (Downs et al. 1991, Parkyn
et al. 2003). Indeed, a previous study observed that “The
success of any attempt to improve the ecological condition
of streams in urban areas will largely depend on human at-
titudes and behavior” (Booth 2005). Therefore, integrating
social and ecological aspects of catchment management,
through citizen science, has both direct management ben-
efits from increased site-scale information, as well as indi-
rect management benefits from an improved awareness of
the local conditions.

ACKNOWLEDGEMENTS
Author contributions: LMC contributed to the study design,

carried out the statistical analyses, led authorship of the manu-
script, and produced figures and tables. IT contributed to the study
design, helped with data analysis, discussed the results, and made
comments andedits on themanuscript. SL contributed to the study
design, discussed the results, and made comments on the manu-
script. EH helped to frame and edit the manuscript.

We thank HSBC Bank for the financial support of the Fresh-
Water Watch, under the scope of the HSBC Water Program. We
sincerely acknowledge the efforts of the citizen scientists who
were active in the program and the participating project scientists
in each study city. Special thanks are extended to editor Charles
P. Hawkins, technical editor Katherine M. Sirianni, and 2 anony-
mous referees for their feedback and helpful comments on the
manuscript. The NCEP Reanalysis 2 data were obtained from the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (www.esrl.noaa
.gov/psd/).

LITERATURE CITED
Ahearn, D. S., R. W. Sheibley, R. A. Dahlgren, M. Anderson, J.

Johnson, and K. W. Tate. 2005. Land use and land cover influ-
ence on water quality in the last free-flowing river draining
the western Sierra Nevada, California. Journal of Hydrology
313:234–247.

Allan, J. D., D. L. Erickson, and J. Fay. 1997. The influence of
catchment land use on stream integrity across multiple spatial
scales. Freshwater Biology 37:149–161.

Bernhardt, E. S., and M. A. Palmer. 2007. Restoring streams in an
urbanizing world. Freshwater Biology 52:738–751.

Booth, D. B. 2005. Challenges and prospects for restoring urban
streams: a perspective from the Pacific Northwest of North
America. Journal of the North American Benthological Society
24:724–737.

Booth, D. B., and C. R. Jackson. 1997. Urbanization of aquatic sys-
tems: degradation thresholds, stormwater detection, and the
limits of mitigation. Journal of the AmericanWater Resources
Association 33:1077–1090.

Booth, D. B., A. H. Roy, B. Smith, and K. Capps. 2016. Global per-
spectives on the urban stream syndrome. Journal of Freshwa-
ter Science 36:1–11.

Brett, M. T., G. B. Arhonditsis, S. E. Mueller, D. M. Hartley, J. D.
Frodge, and D. E. Funke. 2005. Non-point-source impacts on

stream nutrient concentrations along a forest to urban gradi-
ent. Environmental Management 35:330–342.

Bruhn, L., and P. Soranno. 2005. Long term (1974–2001) volun-
teer monitoring of water clarity trends in Michigan Lakes and
their relation to ecoregion and land use/cover. Lake and Res-
ervoir Management 21:10–23.

Buck,O., D.K.Niyogi, andC. R. Townsend. 2004. Scale-dependence
of land use effects on water quality of streams in agricultural
catchments. Environmental Pollution 130:287–299.

Canfield, D. E., C. D. Brown, R. W. Bachmann, and M. V. Hoyer.
2002. Volunteer lake monitoring: testing the reliability of data
collected by the Florida LAKEWATCH Program. Lake and
Reservoir Management 18:1–9.

Capps, K. A., C. N. Bentsen, and A. Ramírez. 2016. Poverty, ur-
banization, and environmental degradation: urban streams
in the developing world. Freshwater Science 35:429–435.

Castilla, E. P., D. G. F. Cunha, F. W. F. Lee, S. Loiselle, K. C. Ho,
and C. Hall. 2015. Quantification of phytoplankton bloom dy-
namics by citizen scientists in urban and peri-urban environ-
ments. Environmental Monitoring and Assessment 187:690.

Chang, H. 2008. Spatial analysis of water quality trends in the
Han River basin, South Korea. Water Research 42:3285–3304.

CIESIN (Center for International Earth Science Information Net-
work). 2016. Documentation for the Gridded Population of
the World, version 4 (GPWv4). Palisades NY: NASA Socio-
economic Data and Applications Center (SEDAC). Columbia
University Press, New York.

Cohen, B. 2006. Urbanization in developing countries: current
trends, future projections, and key challenges for sustainabil-
ity. Technology in Society 28:63–80.

Cunha, D. G. F., S. P. Casali, P. B. de Falco, I. Thornhill, and S. A.
Loiselle. 2017. The contribution of volunteer-based monitor-
ing data to the assessment of harmful phytoplankton blooms
in Brazilian urban streams. Science of the Total Environment
584–585:586–594.

Davies, N.M., R. H.Norris, andM.C. Thoms. 2000. Prediction and
assessment of local stream habitat features using large-scale
catchment characteristics. Freshwater Biology 45:343–369.

Deletic, A., and C. Maksimovic. 1989. Evaluation of water quality
factors in storm runoff from paved areas. Journal of environ-
mental engineering 124:869–879.

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré,
J. R. G.Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T.Mün-
kemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schrö-
der, A. K. Skidmore, D. Zurell, and S. Lautenbach. 2013. Collin-
earity: a review of methods to deal with it and a simulation
study evaluating their performance. Ecography 36:27–46.

Downs, P. W., K. J. Gregory, and A. Brookes. 1991. How inte-
grated is river basin management? Environmental Manage-
ment 15:299–309.

Dunne, T., and L. B. Leopold. 1978.Water in environmental plan-
ning. W. H. Freeman, San Francisco, California.

Eigenbrod, F., V. A. Bell, H. N. Davies, A. Heinemeyer, P. R. Arms-
worth, and K. J. Gaston. 2011. The impact of projected increases
in urbanization on ecosystem services. Proceedings of the Royal
Society of London Series B: Biological Sciences 278:3201–3208.

Elith, J., J. R. Leathwick, and T. Hastie. 2008. A working guide to
boosted regression trees. Journal of Animal Ecology 77:802–813.

Fortin, G., M. LeBlanc, S. Schiavone, O. Chouinard, and A. Utzsch-
neider. 2015. Local perceptions, RUSLEFACmapping, and field

318 | Turbidity in urban streams L. Miguel-Chinchilla et al.



results: the sediment budget of Cocagne River, New Brunswick,
Canada. Environmental Management 55:113–127.

Friedman, J. H. 2001. Greedy function approximation: a gradient
boosting machine. The Annals of Statistics 29:1189–232.

Friedman, J. H. 2002. Stochastic gradient boosting. Computational
Statistics and Data Analysis 38:367–378.

García-Ruiz, J. M., S. Beguería, E. Nadal-Romero, J. C. González-
Hidalgo,N.Lana-Renault,andY.Sanjuán.2015.Ameta-analysis
of soil erosion rates across theworld.Geomorphology 239:160–
173.

Gumiere, S. J., Y. Le Bissonnais, D. Raclot, and B. Cheviron. 2011.
Vegetated filter effects on sedimentological connectivity of
agricultural catchments in erosion modelling: a review. Earth
Surface Processes and Landforms 36:3–19.

Gupta, K., and A. Saul. 1996. Suspended solids in combined sewer
flows. Water Science and Technology 33:93–99.

Harding, J. S., R. G. Young, J. W. Hayes, K. A. Shearer, and J. D.
Stark. 1999. Changes in agricultural intensity and river health
along a river continuum. Freshwater Biology 42:345–357.

Harrel, F. E. Jr., and C. Dupont, 2015. Hmisc: Harrell miscella-
neous. R package version 3.15-0.

Henley, W. F., M. A. Patterson, R. J. Neves, and A. D. Lemly. 2000.
Effects of sedimentation and turbidity on lotic food webs: a
concise review for natural resource managers. Reviews in Fish-
eries Science 8:125–139.

Hubble, T. C. T., B. B. Docker, and I. D. Rutherfurd. 2010. The
role of riparian trees in maintaining riverbank stability: A re-
view of Australian experience and practice. Ecological Engi-
neering 36:292–304.

Huey, G. M., and M. L. Meyer. 2010. Turbidity as an indicator of
water quality in diverse watersheds of the Upper Pecos River
Basin. Water 2:273–284.

Hunsaker, C., and D. Levine. 1995. Hierarchical Approaches to
the study of water quality in rivers. BioScience 45:193–203.

Johnson, L., C. Richards, G. Host, and J. Arthur. 1997. Landscape
influences on water chemistry in Midwestern stream ecosys-
tems. Freshwater Biology 37:193–208.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,
M. Fiorino, and G. L. Potter. 2002. NCEP–DOE AMIP-II Re-
analysis (R-2). Bulletin of the American Meteorological Soci-
ety 83:1631–1643.

Kemp,M.U., E. E. Van Loon, J. Shamoun-Baranes, andW. Bouten.
2012. RNCEP: global weather and climate data at your finger-
tips 3:65–70.

Latham, J., R. Cumani, I. Rosati, and M. Bloise. 2014. FAO Global
LandCover(GLC-SHARE)Beta-Release1.0Database,Landand
WaterDivision. (Available from:http://www.fao.org/geonetwork
/srv/en/main.home?uuidpba4526fd-cdbf-4028-a1bd-5a559c4
bff38)

Lathrop, R. C., S. R. Carpenter, and L. G. Rudstam. 1996. Water
clarity in Lake Mendota since 1900: responses to differing lev-
els of nutrients and herbivory. Canadian Journal of Fisheries
and Aquatic Sciences 53:2250–2261.

Lawler, D. M., I. D. L. Foster, G. E. Petts, S. Harper, and I. P.
Morrissey. 2006a. Suspended sediment dynamics for June
storm events in the urbanized River Tame, UK. Sediment Dy-
namics and the Hydromorphology of Fluvial Systems 306:96–
103.

Lawler, D. M., G. E. Petts, I. D. L. Foster, and S. Harper. 2006b.
Turbidity dynamics during spring storm events in an urban

headwater river system: the Upper Tame, West Midlands,
UK. Science of the Total Environment 360:109–126.

Lehner, B., K. Verdin, and A. Jarvis. 2008. New global hydrogra-
phy derived from spaceborne elevation data. Eos, Transactions
American Geophysical Union 89:93–94.

Li, S., S. Gu,W. Liu, H. Han, and Q. Zhang. 2008.Water quality in
relation to land use and land cover in the upper Han River Ba-
sin, China. Catena 75:216–222.

Li, S., S. Gu, X. Tan, and Q. Zhang. 2009. Water quality in the up-
per Han River basin, China: the impacts of land use/land cover
in riparian buffer zone. Journal of Hazardous Materials 165:
317–324.

Loiselle, S. A., D. G. F. Cunha, S. Shupe, E. Valiente, L. Rocha,
E. Heasley, P. Pérez Belmont, and A. Baruch. 2016. Micro
and macroscale drivers of nutrient concentrations in urban
streams in South, Central and North America. PLoS ONE
11(9):e0162684.

Loiselle, S. A., P. C. Frost, E. Turak, and I. Thornhill. 2017. Citizen
scientists supporting environmental research priorities. Sci-
ence of the Total Environment 598:937.

Lottig, N. R., T. Wagner, E. Norton Henry, K. Spence Cheruvelil,
K. E.Webster, J. A. Downing, and C. A. Stow. 2014. Long-term
citizen-collected data reveal geographical patterns and tempo-
ral trends in lake water clarity. PLoS ONE 9:e95769.

McGrane, S. J., M. G. Hutchins, J. D. Miller, G. Bussi, T. R.
Kjeldsen, and M. Loewenthal. 2017. During a winter of storms
in a small UK catchment, hydrology and water quality re-
sponses follow a clear rural-urban gradient. Journal of Hydrol-
ogy 545:463–477.

Meyer, J. L., M. J. Paul, and W. K. Taulbee. 2005. Stream ecosys-
tem function in urbanizing landscapes. Journal of the North
American Benthological Society 24:602–612.

Moreno Madriñán, M. J., M. Z. Al-Hamdan, D. L. Rickman, and
J. Ye. 2012. Relationship between watershed land-cover/land-
use change andwater turbidity status of Tampa Baymajor trib-
utaries, Florida, USA.Water, Air, and Soil Pollution 223:2093–
2109.

Morgan, D., P. Johnston, K. Osei, and L. Gill. 2017. The influence
of particle size on the first flush strength of urban stormwater
runoff. Water Science and Technology 76:2140–2149.

Müller, D., P. J. Leitão, and T. Sikor. 2013. Comparing the deter-
minants of cropland abandonment in Albania and Romania us-
ing boosted regression trees. Agricultural Systems 117:66–77.

Myre, E., and R. Shaw. 2006. The turbidity tube: simple and accu-
rate measurement of turbidity in the field. Michigan Techno-
logical University, Houghton, Michigan.

Obrecht, D. V., M. Milanick, B. D. Perkins, D. Ready, and J. R.
Jones. 1998. Evaluation of Data Generated from Lake Samples
Collected by Volunteers. Lake and Reservoir Management 14:
21–27.

O’Driscoll, M., S. Clinton, A. Jefferson, A. Manda, and S. McMil-
lan. 2010. Urbanization Effects on Watershed Hydrology and
In-Stream Processes in the Southern United States. Water
2:605–648.

Olson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Burgess,
G. V. N. Powell, E. C. Underwood, J. A. D’Amico, I. Itoua, H. E.
Strand, J. C.Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts,
Y. Kura, J. F. Lamoureux,W.W.Wettengel, P. Hedao, and K. R.
Kassem. 2001. Terrestrial ecoregions of the world: a new map
of life on earth: a new global map of terrestrial ecoregions pro-

Volume 38 June 2019 | 319



vides an innovative tool for conserving biodiversity. BioScience
51:933–938.

Olden, J. D., J. J. Lawler, and N. L. Poff. 2008. Machine learning
methods without tears: a primer for ecologists. The Quarterly
Review of Biology 83:171–193.

Omernik, J. M., A. R. Abernathy, and L. M. Male. 1981. Stream
nutrient levels and proximity of agricultural and forest land
to streams: some relationships. Journal of Soil andWater Con-
servation 36:227–231.

Panagos, P., P. Borrelli, K. Meusburger, C. Alewell, E. Lugato,
and L. Montanarella. 2015. Estimating the soil erosion cover-
management factor at the European scale. Land Use Policy
48:38–50.

Parkyn, S. M., R. J. Davies-Colley, N. J. Halliday, K. J. Costley,
and G. F. Croker. 2003. Planted riparian buffer zones in New
Zealand: do they live up to expectations? Restoration Ecology
11:436–447.

Paul, M. J., and J. L. Meyer. 2001. Streams in the urban landscape.
Annual Review of Ecology and Systematics 32:333–365.

Paule-Mercado, M. A., J. S. Ventura, S. A. Memon, D. Jahng, J. H.
Kang, and C. H. Lee. 2016. Monitoring and predicting the fe-
cal indicator bacteria concentrations from agricultural, mixed
land use and urban stormwater runoff. Science of the Total
Environment 550:1171–1181.

Pearson, R. 2017. Interpreting Predictive Models Using Partial
Dependence Plots. https://cran.r-project.org/web/packages
/datarobot/vignettes/PartialDependence.html.

Peters, N. E. 2009. Effects of urbanization on stream water quality
in the city of Atlanta, Georgia, USA. Hydrological Processes
23:2860–2878.

Preisendorfer, R. W. 1986. Secchi disk science: Visual optics of
natural waters 1. Limnology and Oceanography 31:909–926.

R Core Development Team. 2018. R: a language and environment
for statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria.

Rains, M. C., R. A. Dahlgren, G. E. Fogg, T. Harter, and R. J. Wil-
liamson. 2008. Geological control of physical and chemical
hydrology in California vernal pools. Wetlands 28:347–362.

Ridgeway, G. 2015.Generalized boosted regressionmodels. R pack-
age version 2.1.1.

Roy, A. H., M. C. Freeman, B. J. Freeman, S. J. Wenger, W. E. En-
sign, and J. L. Meyer. 2005. Investigating hydrologic alteration
as a mechanism of fish assemblage shifts in urbanizing
streams. Journal of the North American Benthological Society
24:656–678.

Roy, A. H., M. C. Freeman, B. J. Freeman, S. J. Wenger, J. L. Meyer,
andW. E. Ensign. 2006. Importance of riparian forests in urban
catchments contingent on sediment and hydrologic regimes.
Environmental Management 37:523–539.

Roy, A. H., A. D. Rosemond, M. J. Paul, D. S. Leigh, and J. B. Wal-
lace. 2003. Stream macroinvertebrate response to catchment
urbanization (Georgia,U.S.A.). FreshwaterBiology48:329–346.

Rügner, H., M. Schwientek, B. Beckingham, B. Kuch, and P.
Grathwohl. 2013. Turbidity as a proxy for total suspended sol-
ids (TSS) and particle facilitated pollutant transport in catch-
ments. Environmental Earth Sciences 69:373–380.

Ryan, P. A. 1991. Environmental effects of sediment on New Zea-
land streams: a review. New Zealand Journal of Marine and
Freshwater Research 25:207–221.

Sliva, L., andD. D.Williams. 2001. Buffer zone versus whole catch-
ment approaches to studying land use impact on river water
quality. Water Research 35:3462–72.

Thornhill, I., S. Loiselle, K. Lind, and D. Ophof. 2016. The citizen
science opportunity for researchers and agencies. BioScience
66:720–721.

Trimble, S.W., and A. C. Mendel. 1995. The cow as a geomorphic
agent—a critical review. Geomorphology 13:233–253.

Tyler, J. E. 1968. The Secchi disk. Limnology and Oceanography
13:1–6.

UNPD (United Nations Procurement Division). 2014. World ur-
banization prospects. The 2014 revision.

Vairavamoorthy, K., S. D. Gorantiwar, and A. Pathirana. 2008.
Managing urban water supplies in developing countries—cli-
mate change and water scarcity scenarios. Physics and Chem-
istry of the Earth 33:330–339.

Walsh, C. J., T. D. Fletcher, and A. R. Ladson. 2005a. Stream res-
toration in urban catchments through redesigning stormwater
systems: looking to the catchment to save the stream. Journal
of the North American Benthological Society 24:690–705.

Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M.
Groffman, and R. P. Morgan II. 2005b. The urban stream syn-
drome: current knowledge and the search for a cure. Journal
of the North American Benthological Society 24:706–723.

Walters, D.M., D. S. Leigh, andA. B. Bearden. 2003. Urbanization,
sedimentation, and the homogenization of fish assemblages in
the Etowah River Basin, USA. Hydrobiologia 494:5–10.

Walters, D. M., A. H. Roy, and D. S. Leigh. 2009. Environmental
indicators of macroinvertebrate and fish assemblage integrity
in urbanizing watersheds. Ecological Indicators 9:1222–1233.

Wenger, S. J., A. H. Roy, C. R. Jackson, E. S. Bernhardt, T. L. Carter,
S. Filoso, C. A. Gibson, W. C. Hession, S. S. Kaushal, E. Martí,
J. L. Meyer, M. A. Palmer, M. J. Paul, A. H. Purcell, A. Ramírez,
A. D. Rosemond, K. A. Schofield, E. B. Sudduth, and C. J.Walsh.
2009. Twenty-six key research questions in urban stream ecol-
ogy: an assessment of the state of the science. Journal of the
North American Benthological Society 28:1080–1098.

Wernand, M. R. 2010. On the history of the Secchi disc. Journal
of the European Optical Society: Rapid Publications 5:10013s.

West, A. O., and J. T. Scott. 2016. Black disk visibility, turbidity,
and total suspended solids in rivers: a comparative evaluation.
Limnology and Oceanography: Methods 14:658–667.

Zaimes, G.N., R. C. Schultz, andT.M. Isenhart. 2004. Streambank
erosion adjacent to riparian forest buffers, row crop fields, and
continuously-grazed pastures along Bear Creek in central Iowa.
Journal of Soil and Water Conservation 50:19–27.

Zhang, Q., Z. Li, G. Zeng, J. Li, Y. Fang, Q. Yuan, Y. Wang, and
F. Ye. 2009. Assessment of surface water quality using multi-
variate statistical techniques in red soil hilly region: a case study
of Xiangjiang watershed, China. Environmental Monitoring
and Assessment 152:123–131.

Zhang, Y., R. Ma, M. Hu, J. Luo, J. Li, and Q. Liang. 2017. Com-
bining citizen science and land use data to identify drivers of
eutrophication in the Huangpu River system. Science of the
Total Environment 584–585:651–664.

Zhou, T., J. Wu, and S. Peng. 2012. Assessing the effects of land-
scape pattern on river water quality at multiple scales: a case
study of the Dongjiang River watershed, China. Ecological In-
dicators 23:166–175.

320 | Turbidity in urban streams L. Miguel-Chinchilla et al.


	Article coversheet Freshwater Science
	Local and landscape

